

Nonregular Languages

Theorem: The following are all equivalent:

- L is a regular language.
- There is a **DFA** D such that $\mathcal{L}(D) = L$.
- There is an **NFA** N such that $\mathcal{L}(N) = L$.
- There is a **regular expression** R such that $\mathcal{L}(R) = L$.

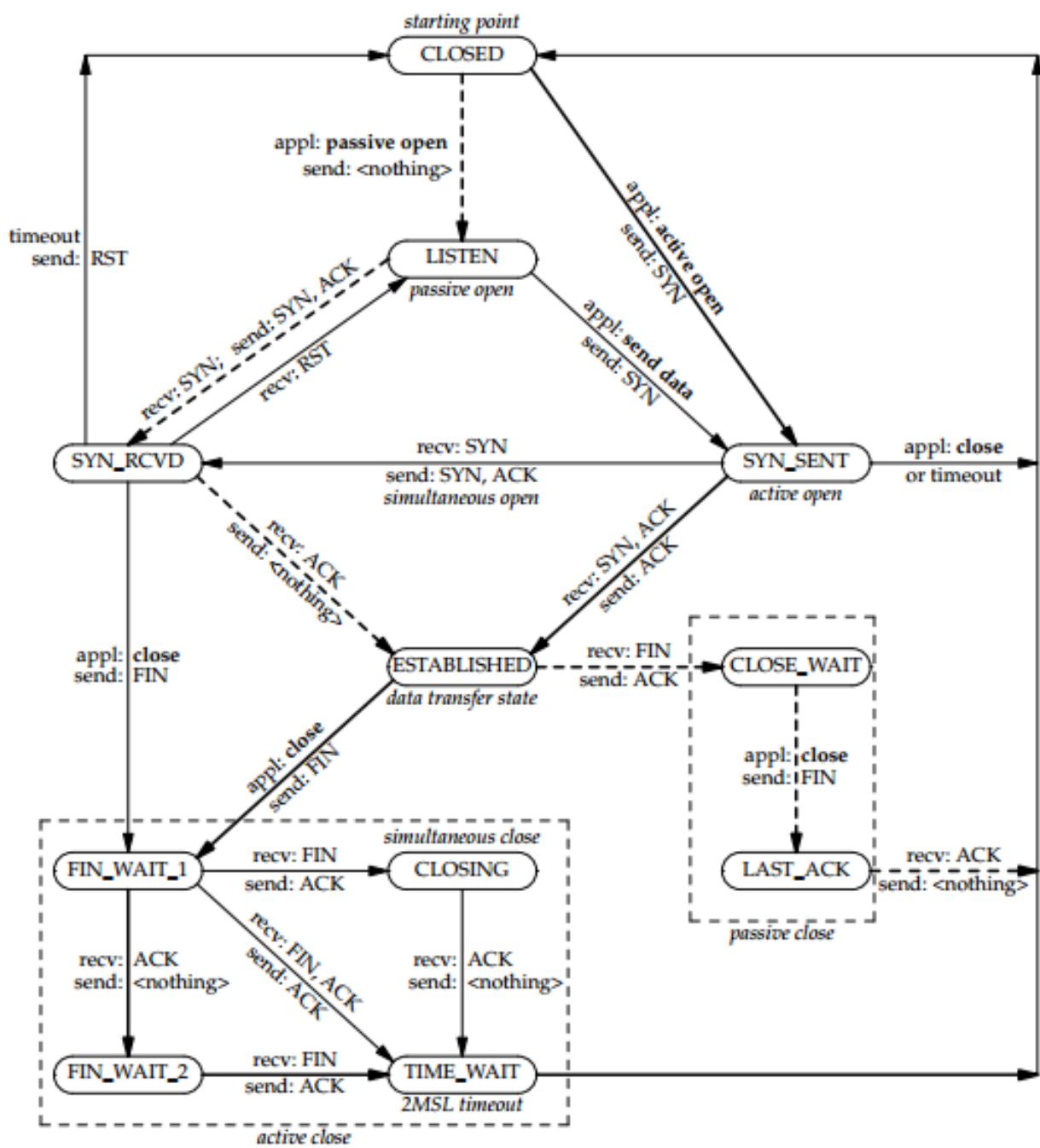
New Stuff!

Why does this matter?

Buttons as Finite-State Machines:

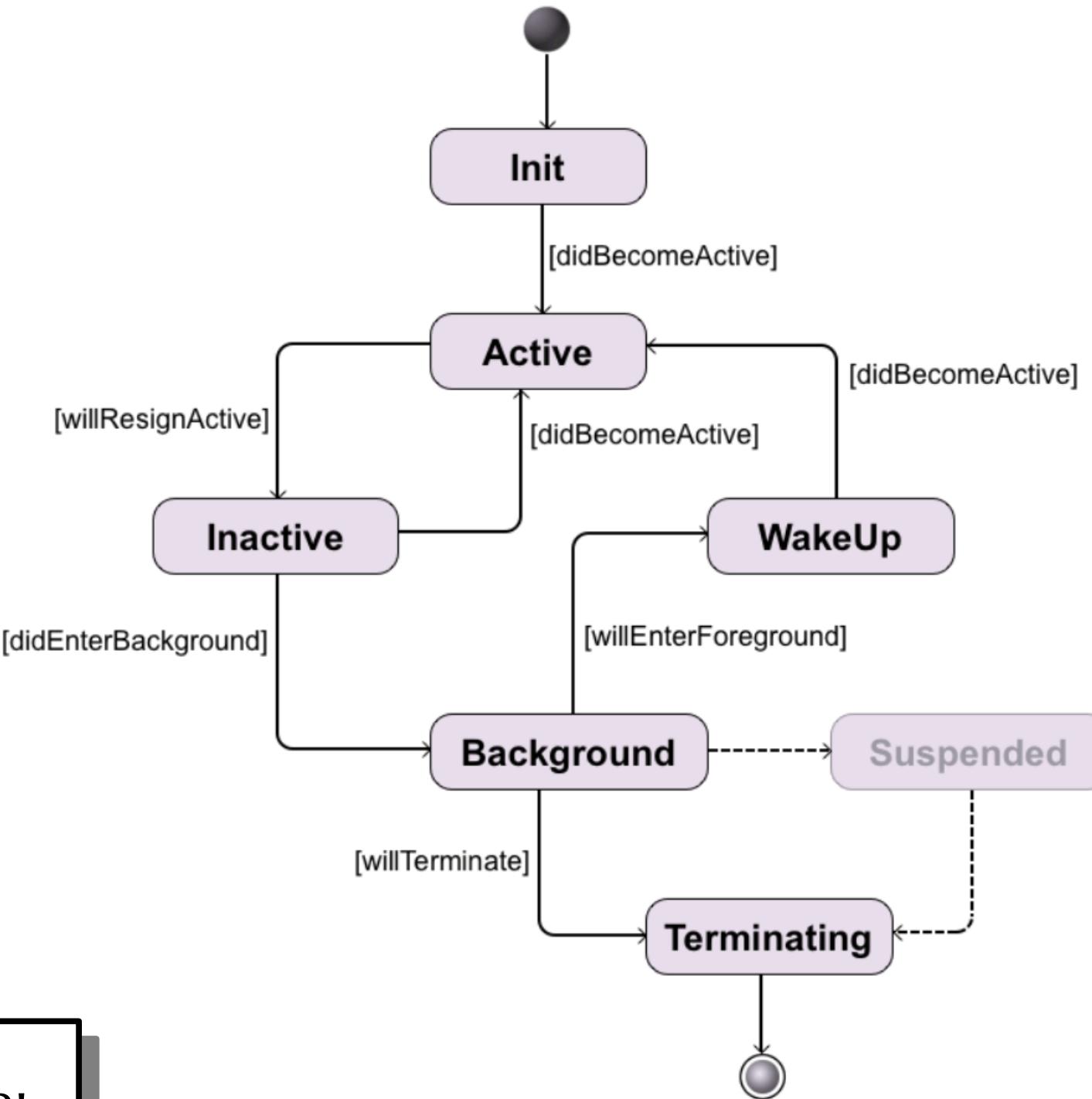
<http://cs103.stanford.edu/tools/button-fsm/>

Take
CS148!



Take
CS144!

normal transitions for client
normal transitions for server
appl: state transitions taken when application issues operation
recv: state transitions taken when segment received
send: what is sent for this transition



Take
CS193P!

Computers as Finite Automata

- My computer has 12GB of RAM and about 150GB of hard disk space.
- That's a total of 162GB of memory, which is 1,391,569,403,904 bits.
- There are “only” $2^{1,391,569,403,904}$ possible configurations of the memory in my computer.
- You could in principle build a DFA representing my computer, where there's one symbol per type of input the computer can receive.

A Powerful Intuition

- ***Regular languages correspond to problems that can be solved with finite memory.***
 - At each point in time, we only need to store one of finitely many pieces of information.
- Nonregular languages, in a sense, correspond to problems that cannot be solved with finite memory.
- Since every computer ever built has finite memory, in a sense, nonregular languages correspond to problems that cannot be solved by physical computers!

Finding Nonregular Languages

Finding Nonregular Languages

- To prove that a language **is regular**, we can just find a DFA, NFA, or regex for it.
- To prove that a language **is not regular**, we need to prove that there is **no possible** DFA for it.
 - *(or no possible NFA, or regex--but since these are equivalent we only need to show one is impossible)*
- ***This sort of argument will be challenging!***

Finding Nonregular Languages

- What kind of characteristics make a language too hard for any of these to handle?
 - Deterministic Finite Automata (DFA)
 - Nondeterministic Finite Automata (NFA)
 - Regular Expression

PollEv.com/cs103spr25:
T/F: You can't make a DFA for a language (set of strings) with infinite cardinality, so a language with infinite cardinality cannot be a regular language.

A Simple Language

- Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$ and consider the following language:

$$E = \{\mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N}\}$$

- E is the language of all strings of n \mathbf{a} 's followed by n \mathbf{b} 's:

$$\{ \varepsilon, \mathbf{ab}, \mathbf{aabb}, \mathbf{aaabbb}, \mathbf{aaaabbbb}, \dots \}$$

A Simple Language

$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$$

PollEv.com/cs103spr25: Which of the following are correct regular expressions for the language E defined above?

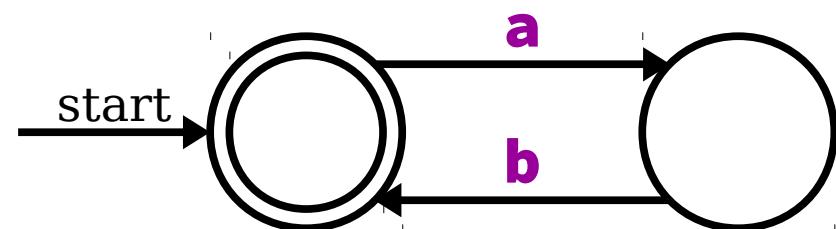
$\mathbf{a}^* \mathbf{b}^*$

$(\mathbf{a} \mathbf{b})^*$

$\mathbf{\epsilon} \cup \mathbf{a} \mathbf{b} \cup \mathbf{a}^2 \mathbf{b}^2 \cup \mathbf{a}^3 \mathbf{b}^3$

Another Attempt

- Let's try to design an NFA for
$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$
- Does this machine work?

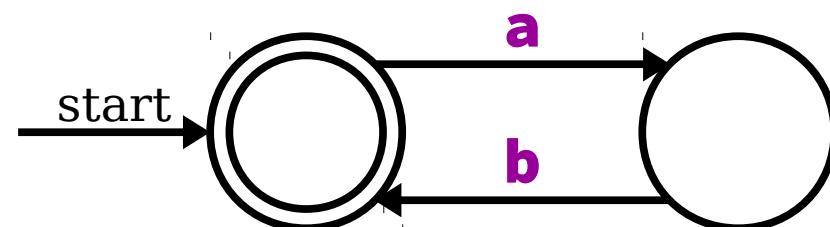


Another Attempt

- Let's try to design an NFA for

$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$

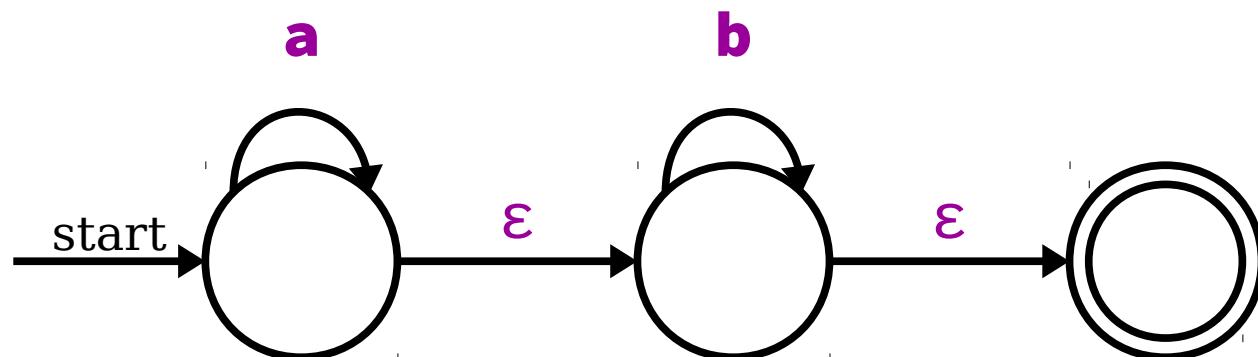
- Does this machine work?



PollEv.com/cs103spr25:
What is a regex that
describes the language of
this NFA?

Another Attempt

- Let's try to design an NFA for
$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$
- How about this one?

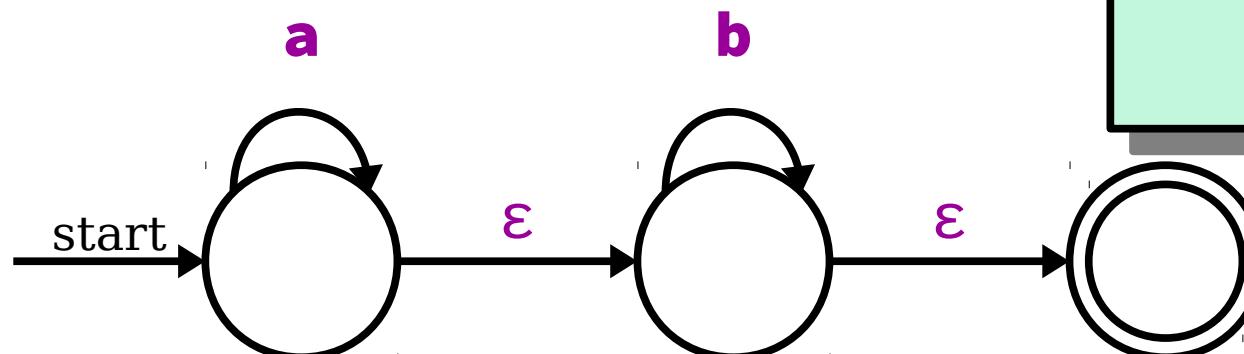


Another Attempt

- Let's try to design an NFA for

$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$

- How about this one?



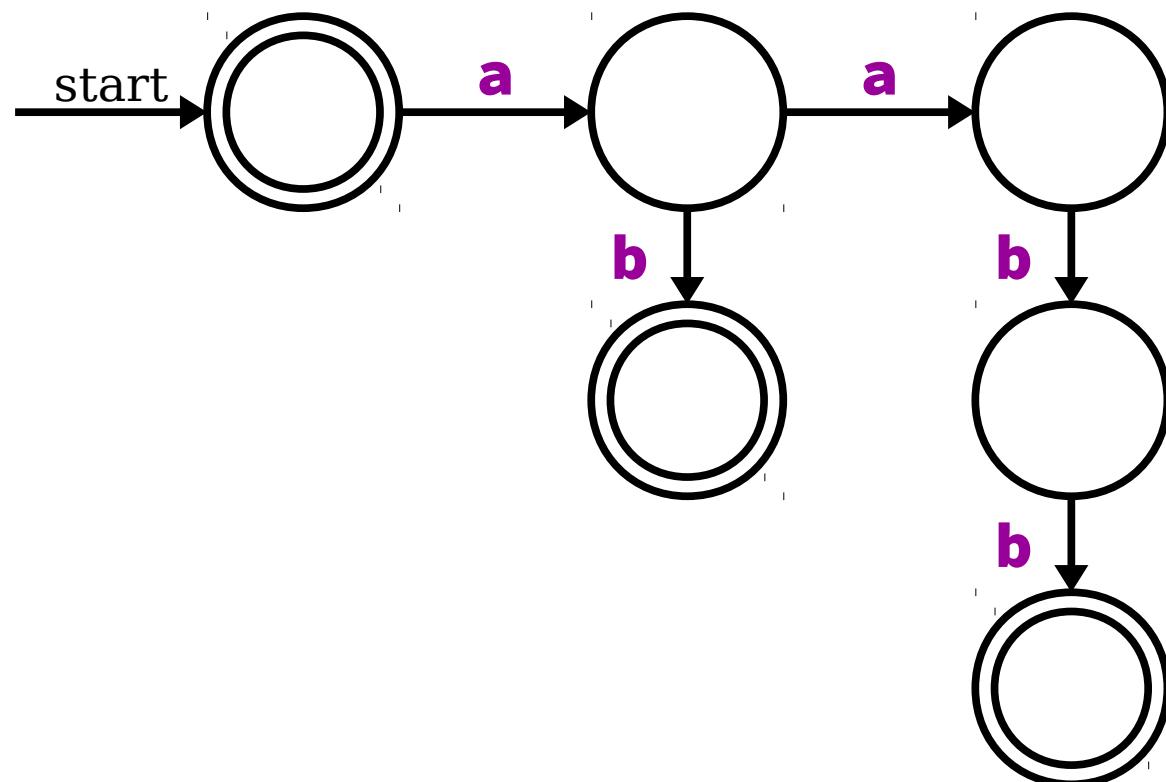
PollEv.com/cs103spr25:
What is a regex that
describes the language of
this NFA?

Another Attempt

- Let's try to design an NFA for

$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$

- What about this?

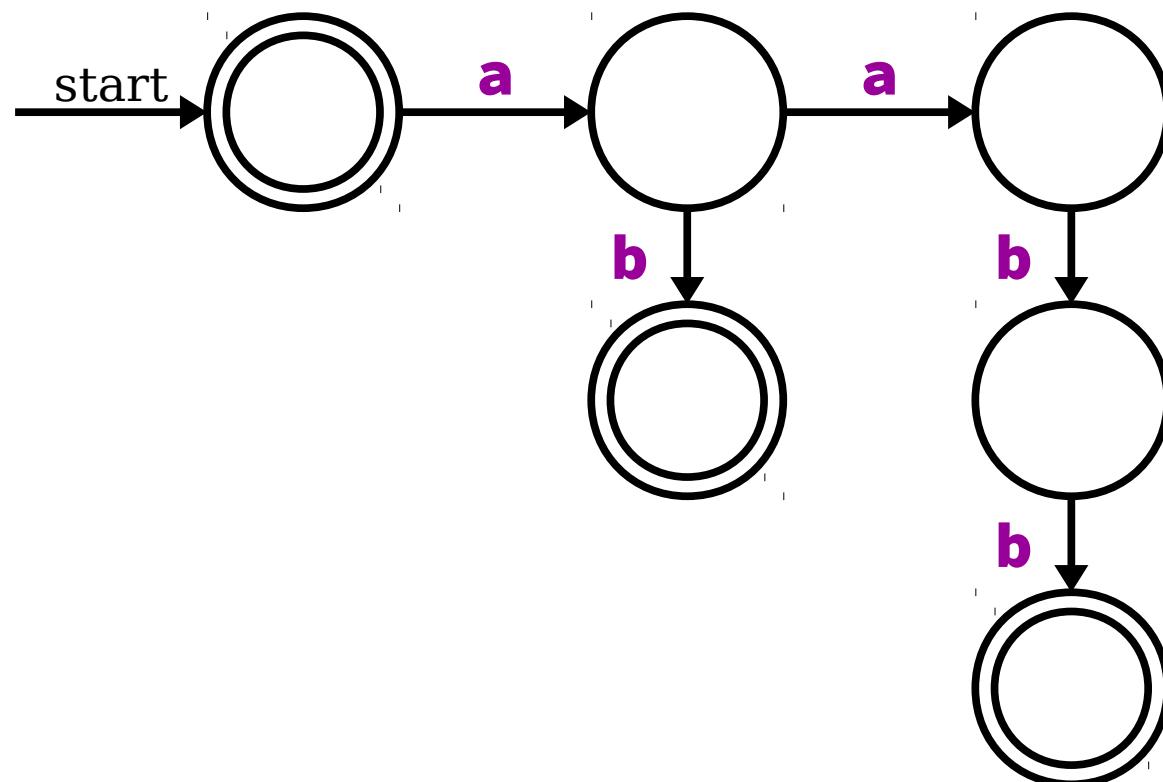


Another Attempt

- Let's try to design an NFA for

$$E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}.$$

- What about this?



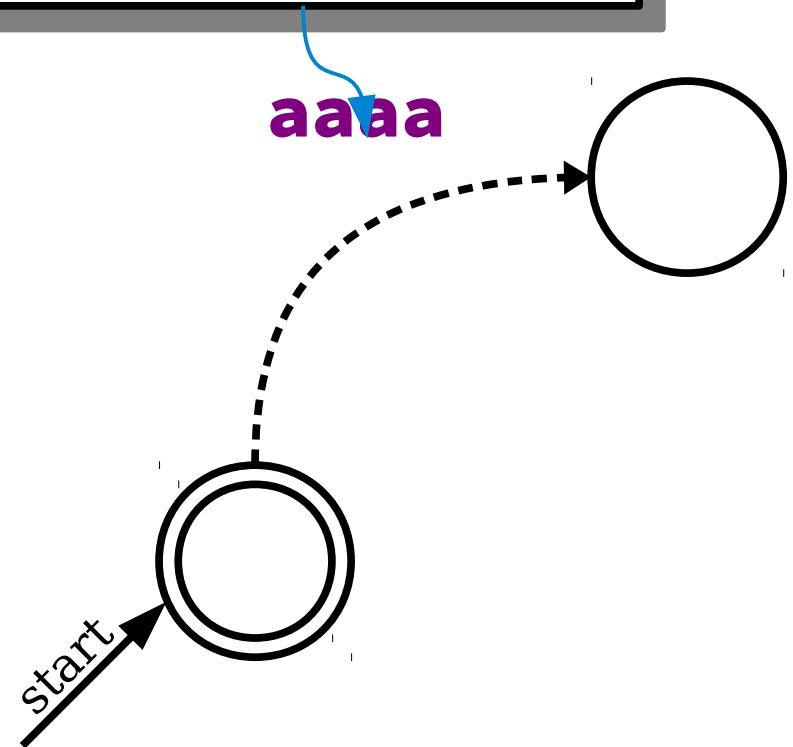
PollEv.com/cs103spr25:
What is a regex that
describes the language of
this NFA?

We seem to be running into some trouble.
Why is that?

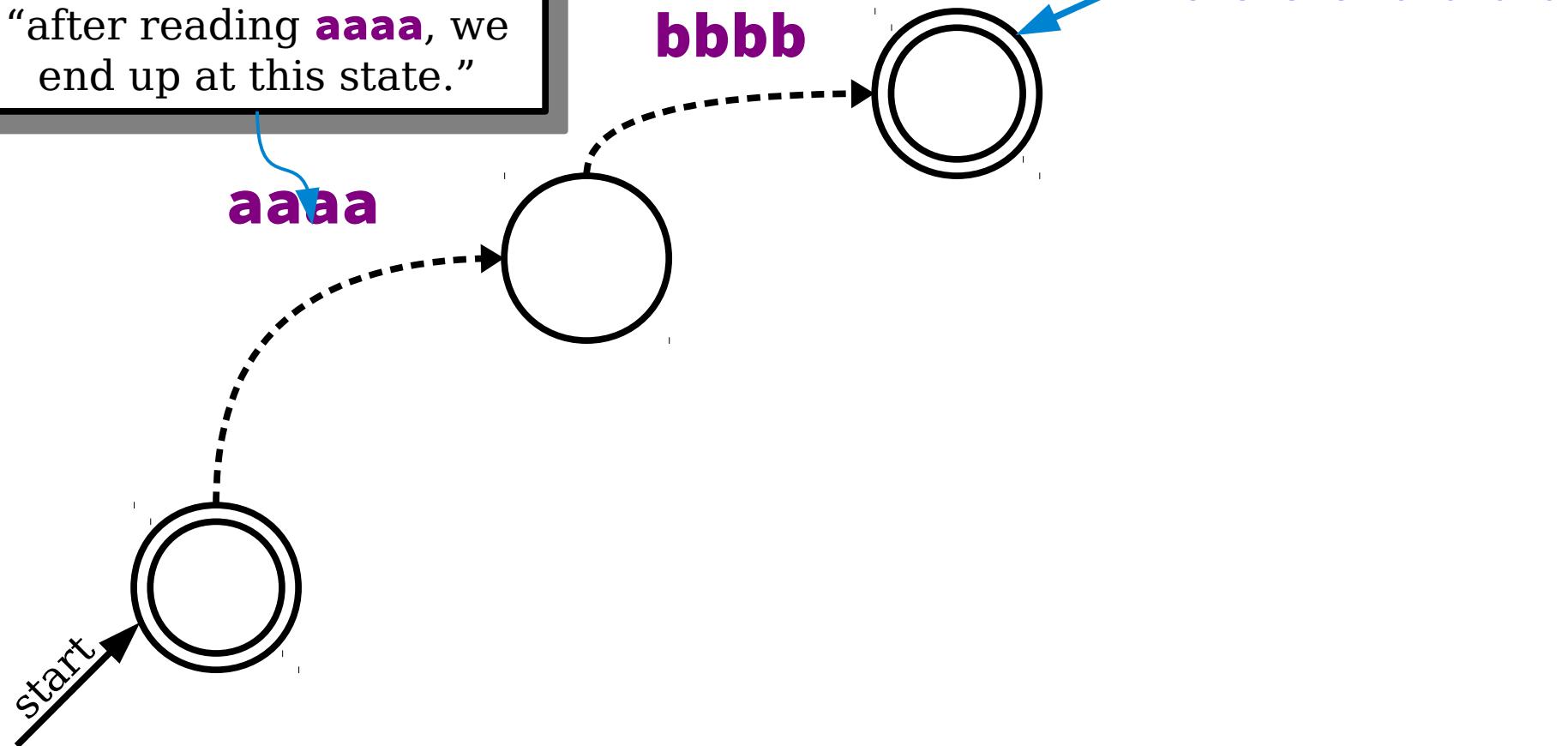
Let's imagine what a DFA for the language
 $\{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ would have to look like.

Can we say anything about it?

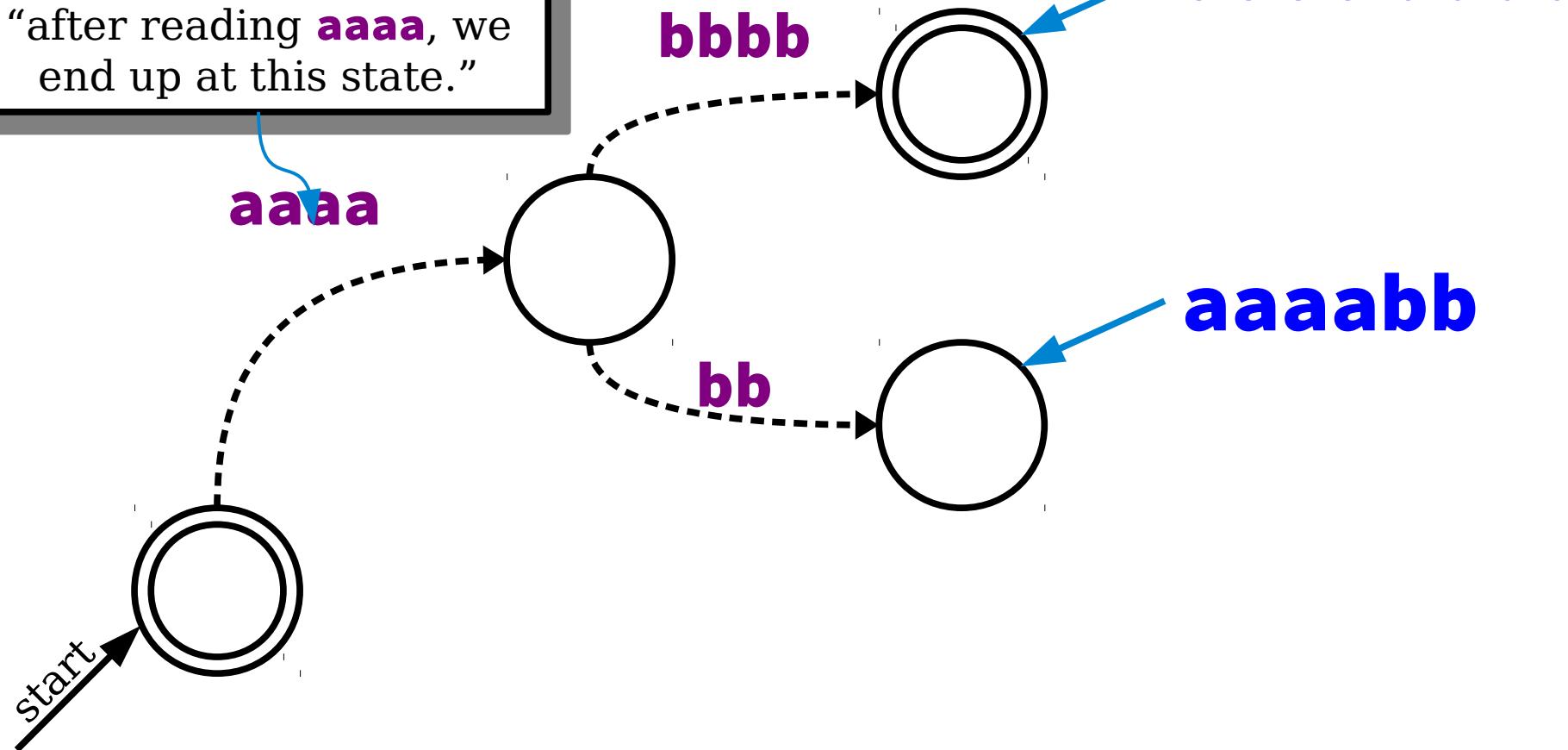
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



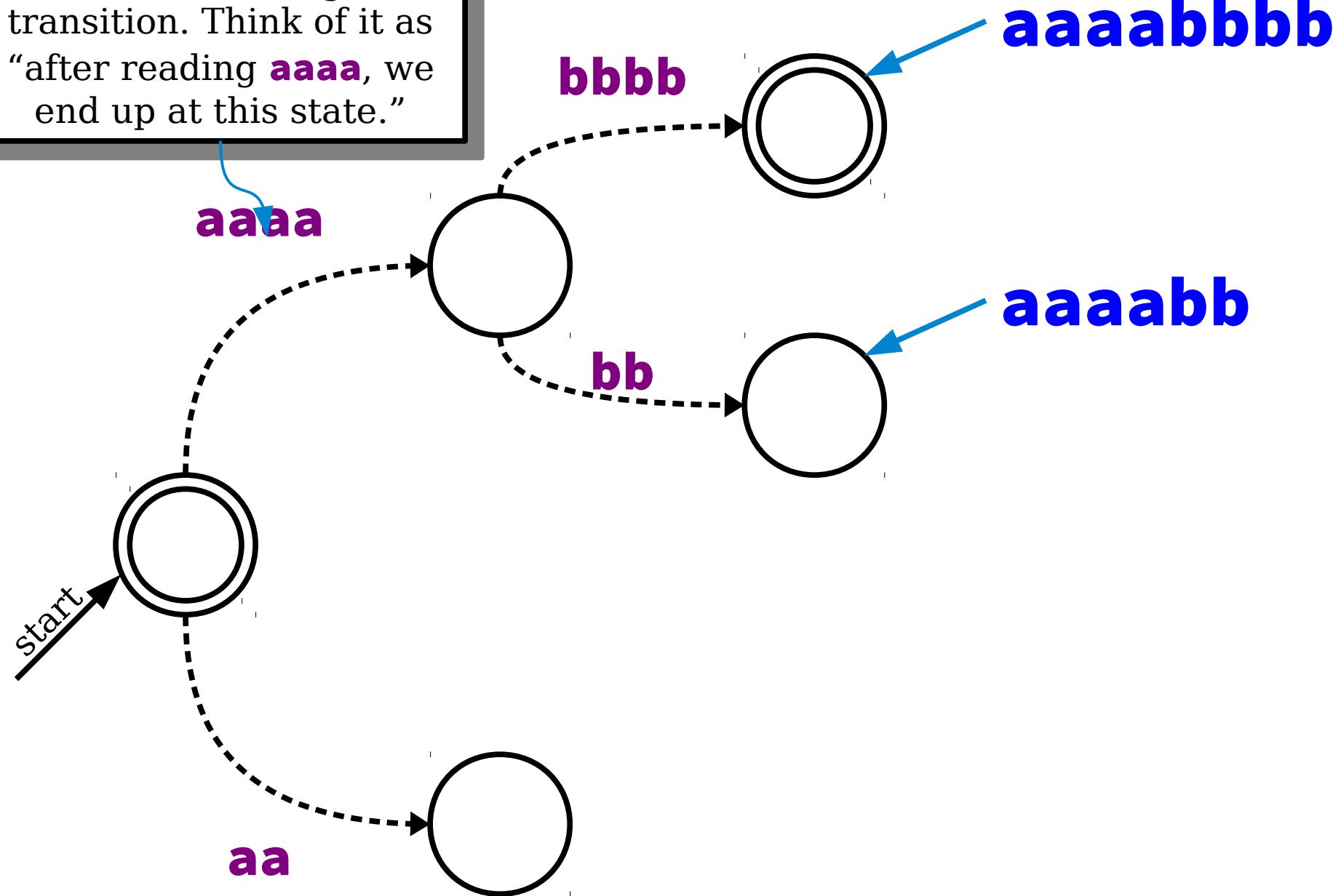
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



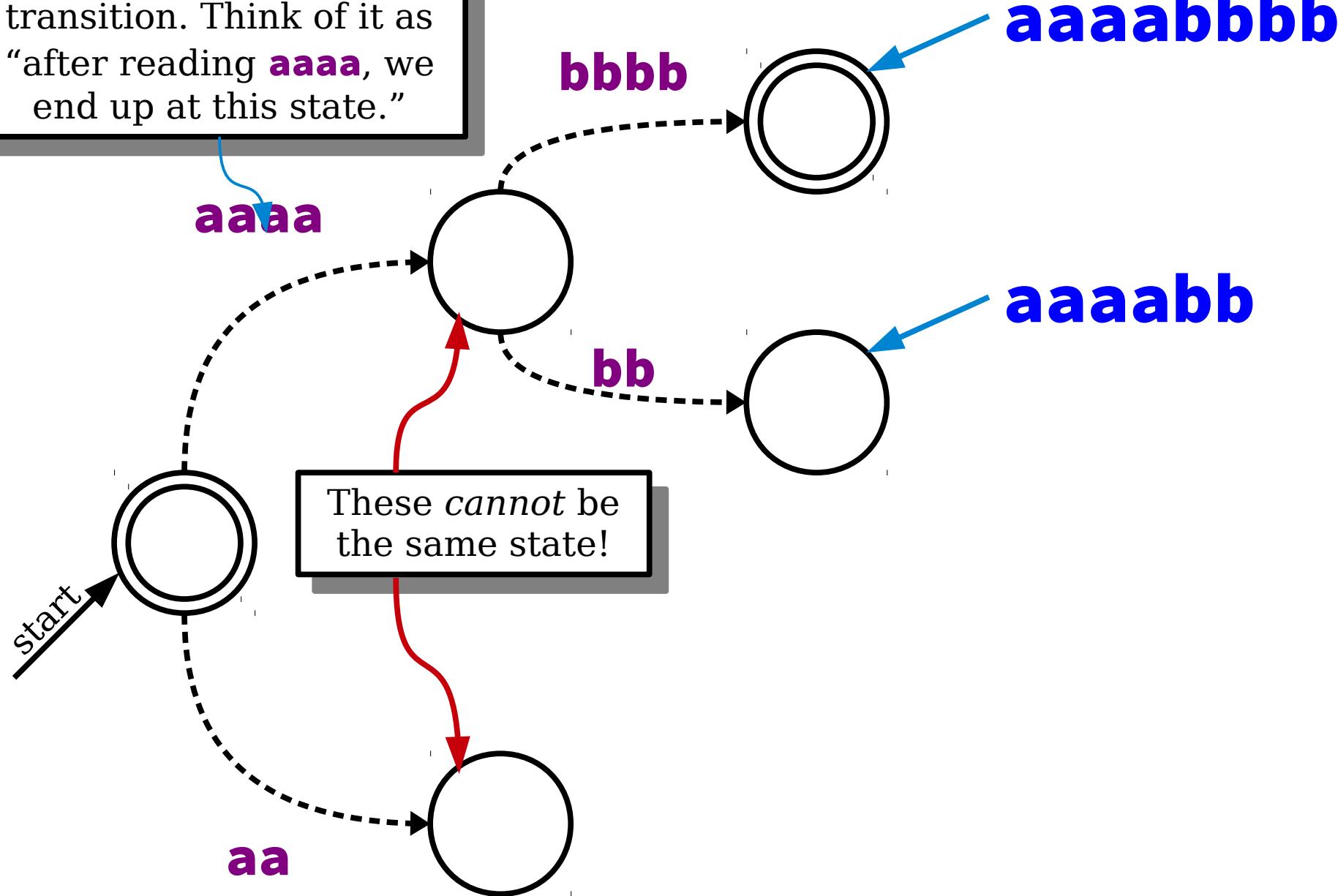
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



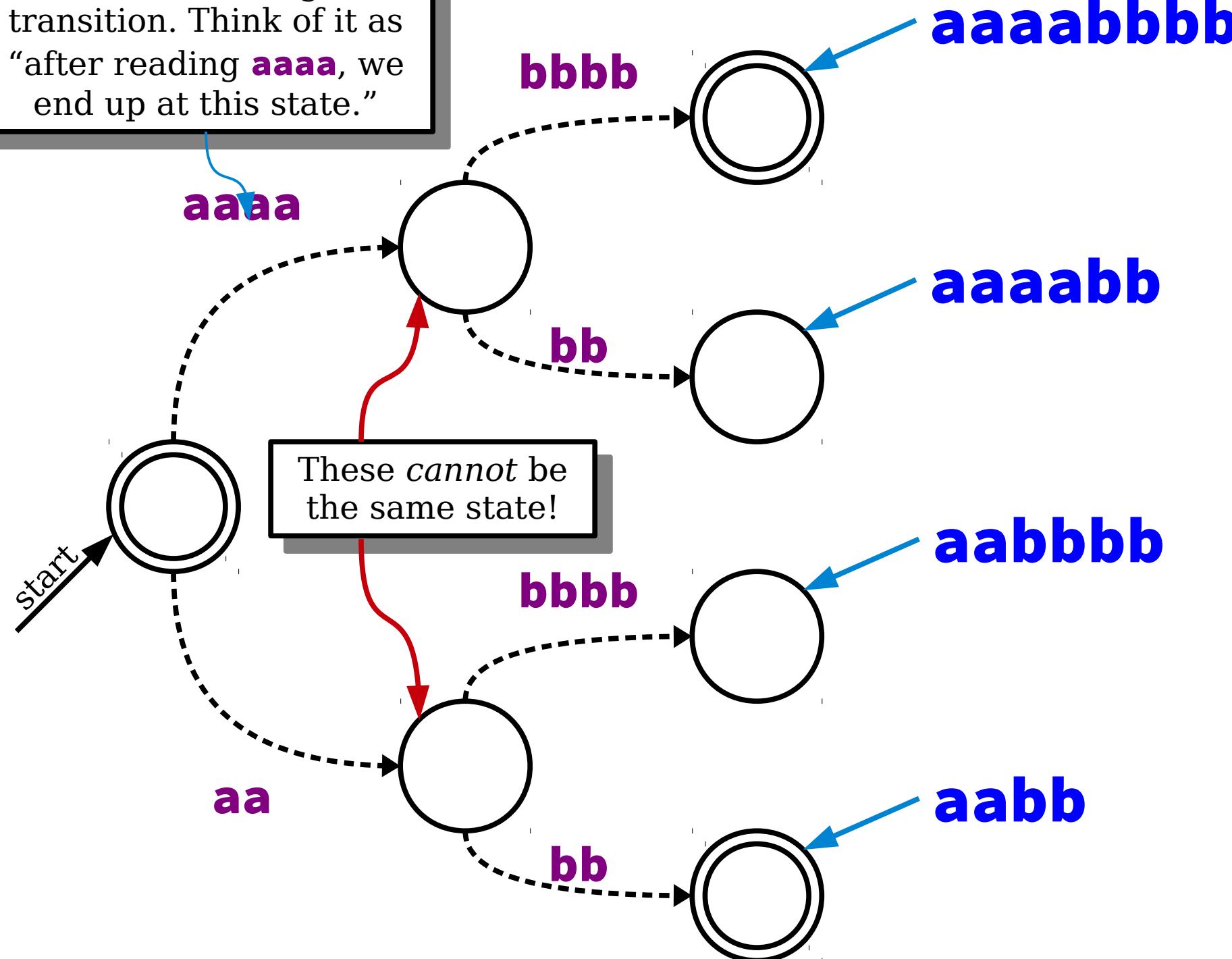
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



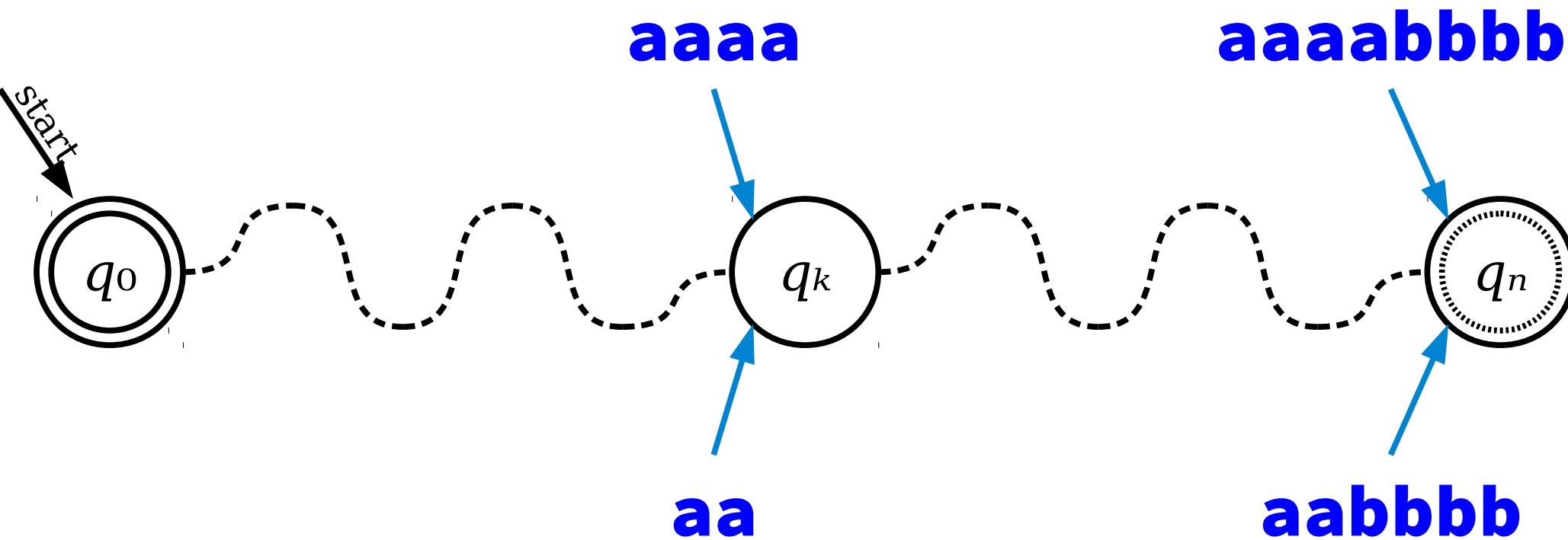
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



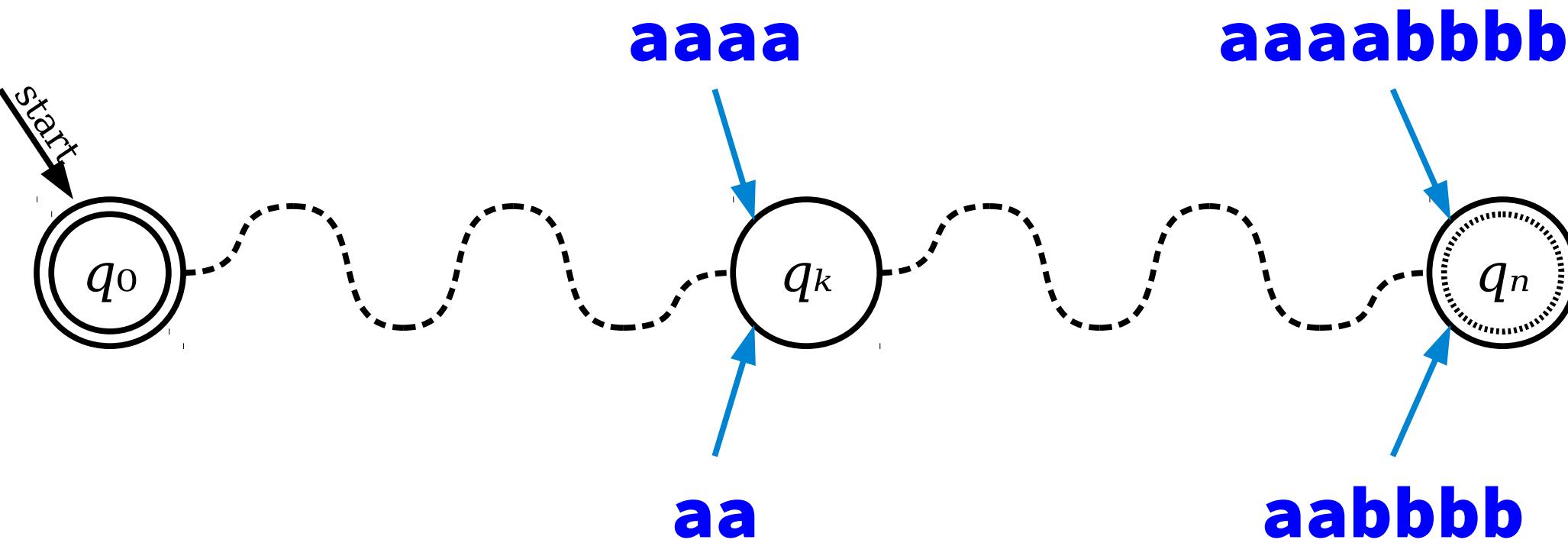
This isn't a single transition. Think of it as "after reading **aaaa**, we end up at this state."



A Different Perspective



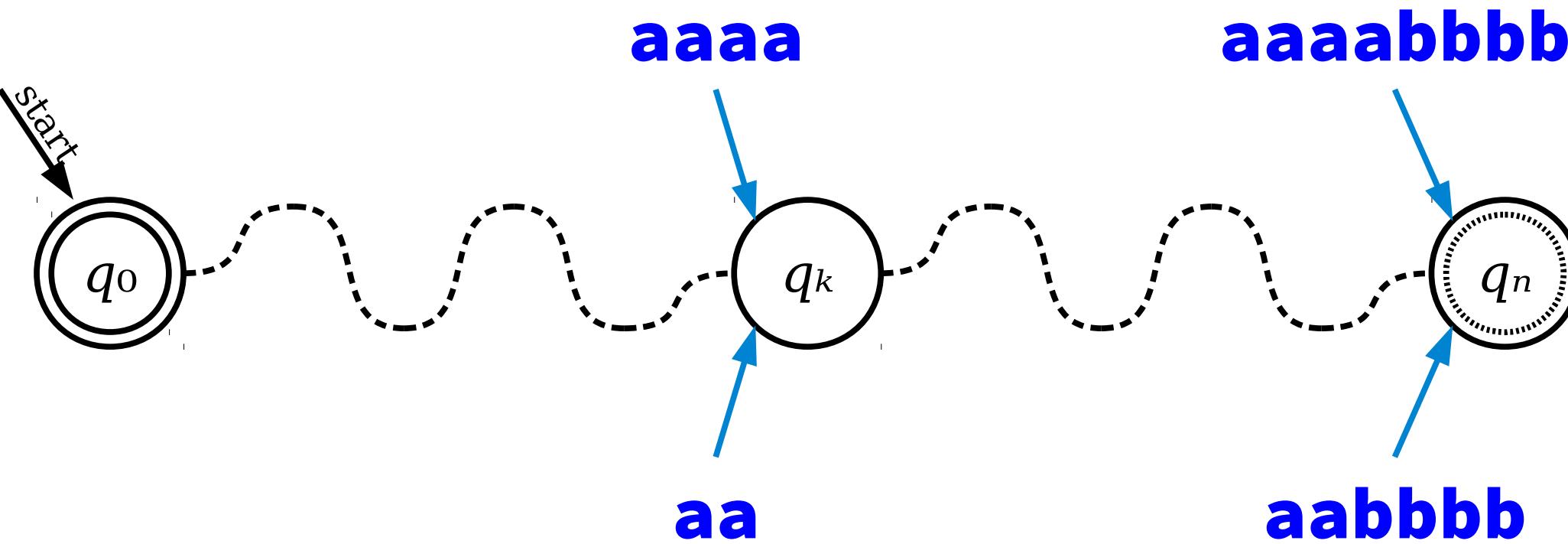
A Different Perspective



What happens if q_n is...

- ...an accepting state?
- ...a rejecting state?

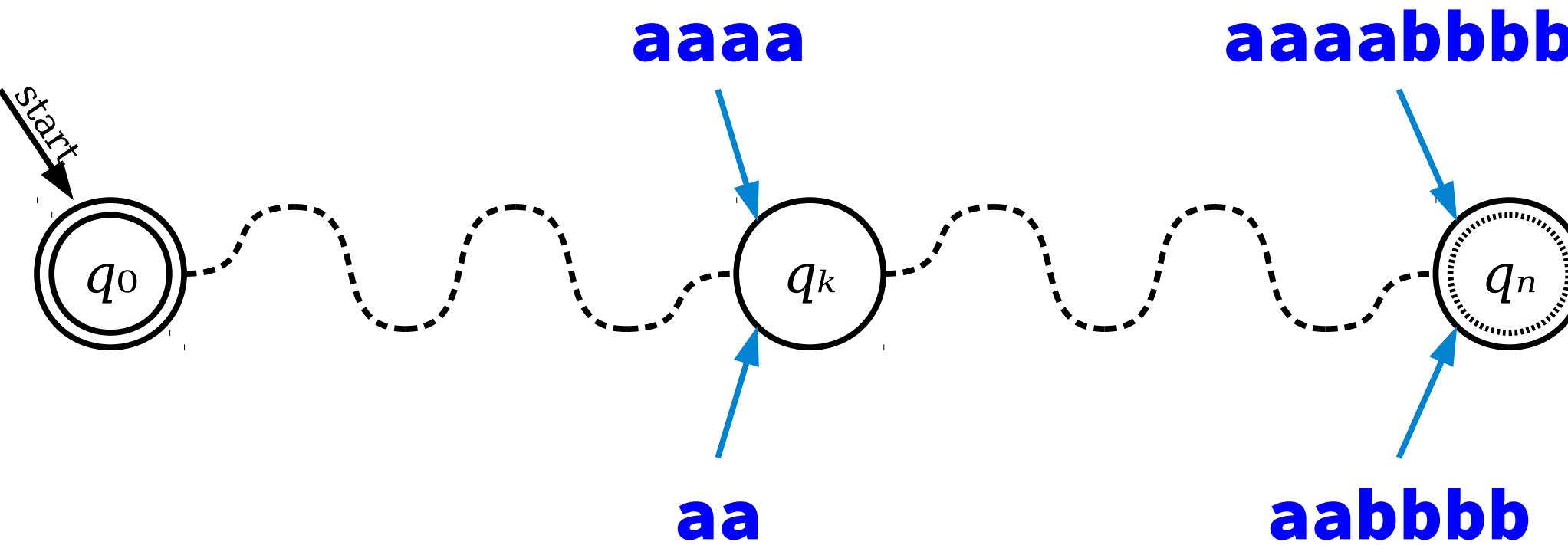
A Different Perspective



What happens if q_n is...

...an accepting state? We accept **aabb** $\notin E$!
...a rejecting state?

A Different Perspective



What happens if q_n is...

...an accepting state? We accept **aabb** $\notin E$!

...a rejecting state? We reject **aaaabb** $\in E$!

What's Going On?

- As you just saw, the strings \mathbf{a}^4 and \mathbf{a}^2 can't end up in the same state in *any* DFA for $E = \{\mathbf{a}^n\mathbf{b}^n \mid n \in \mathbb{N}\}$.
- Two proof routes:
 - *Direct*: The states you reach for \mathbf{a}^4 and \mathbf{a}^2 have to behave differently when reading \mathbf{b}^4 - in one case it should lead to an accept state, in the other it should lead to a reject state. Therefore, they must be different states.
 - *Contradiction*: Suppose you do end up in the same state. Then $\mathbf{a}^4\mathbf{b}^4$ and $\mathbf{a}^2\mathbf{b}^4$ end up in the same state, so we either reject $\mathbf{a}^4\mathbf{b}^4$ (oops) or accept $\mathbf{a}^2\mathbf{b}^4$ (oops).
- **Powerful intuition**: Any DFA for E must keep \mathbf{a}^4 and \mathbf{a}^2 separated. It needs to remember something fundamentally different after reading those strings.

This idea - that two strings shouldn't end up in the same DFA state - is fundamental to discovering nonregular languages.

Let's go formalize this!

Distinguishability

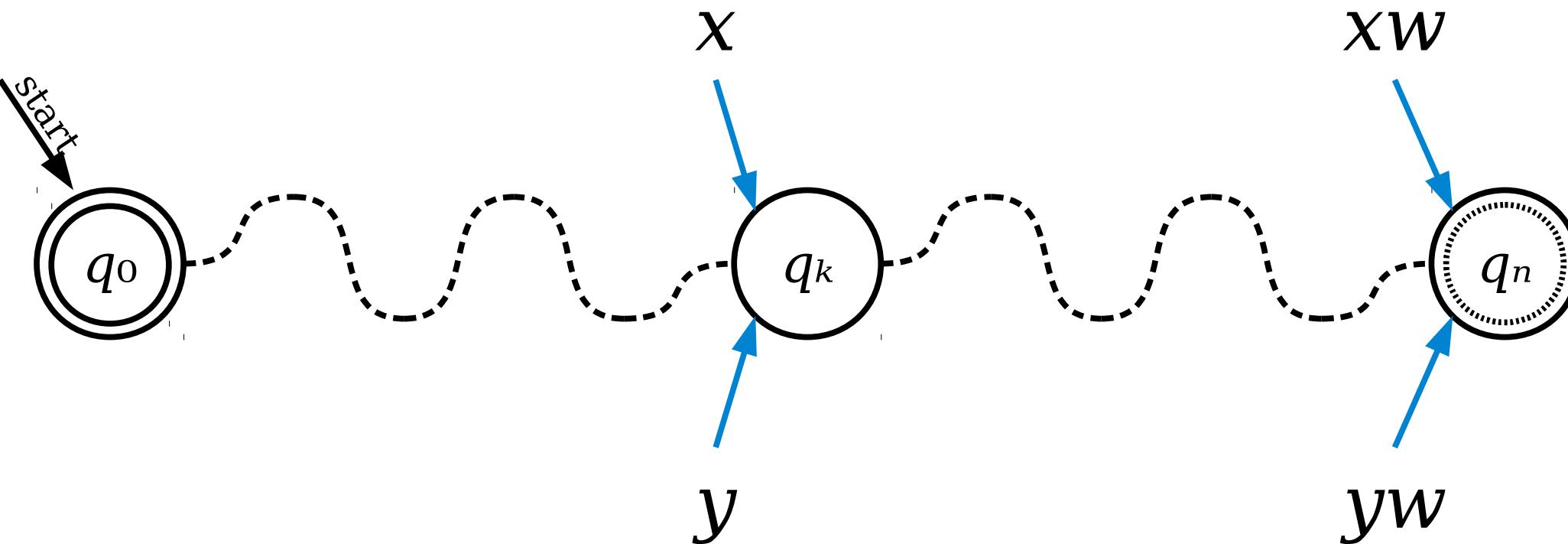
- Let L be an arbitrary language over Σ .
- Two strings $x \in \Sigma^*$ and $y \in \Sigma^*$ are called ***distinguishable relative to L*** if there is a string $w \in \Sigma^*$ such that exactly one of xw and yw is in L .
- We denote this by writing $x \not\equiv_L y$.
- In our previous example, we saw that $\mathbf{a}^2 \not\equiv_E \mathbf{a}^4$.
 - Try appending \mathbf{b}^4 to both of them.
- Formally, we say that $x \not\equiv_L y$ if the following is true:

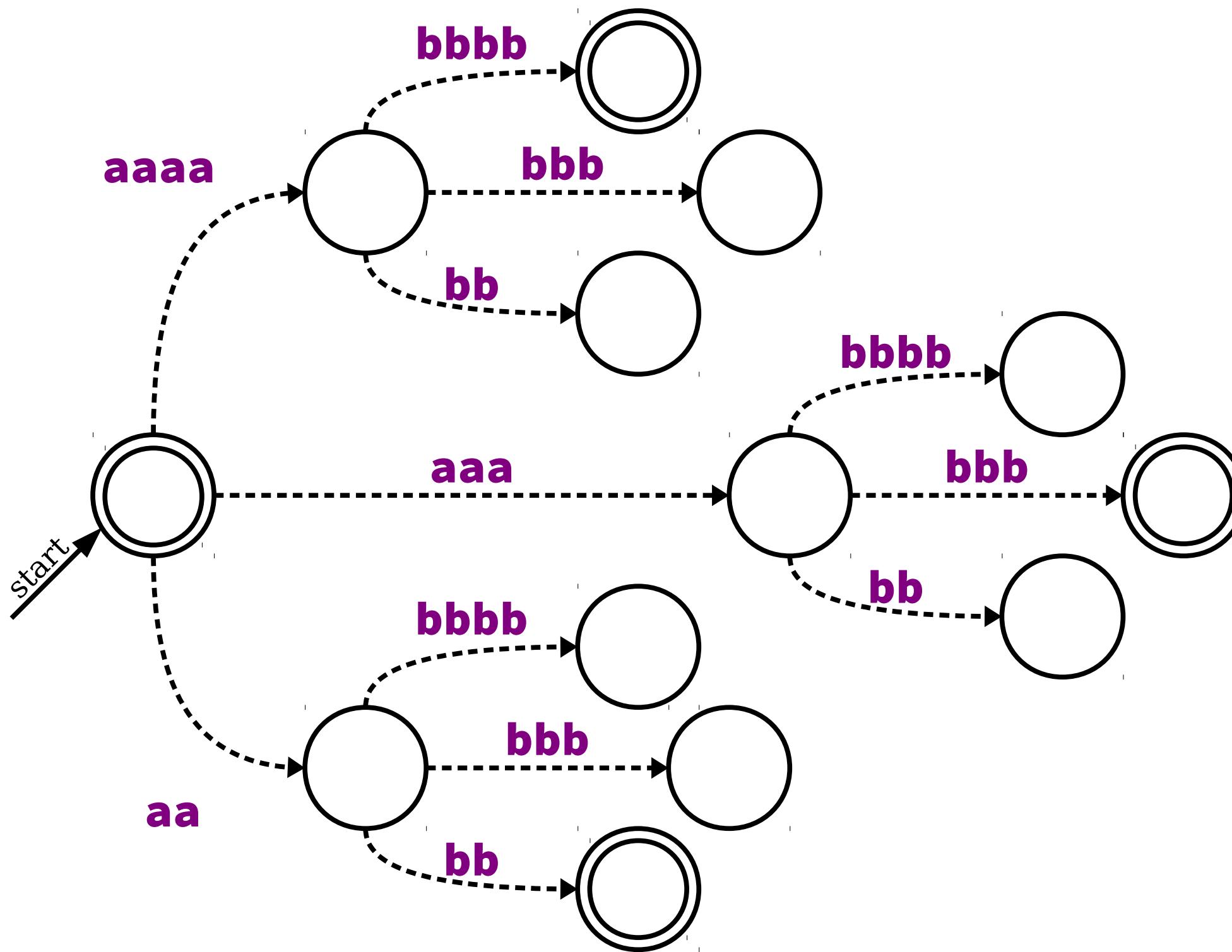
$$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$$

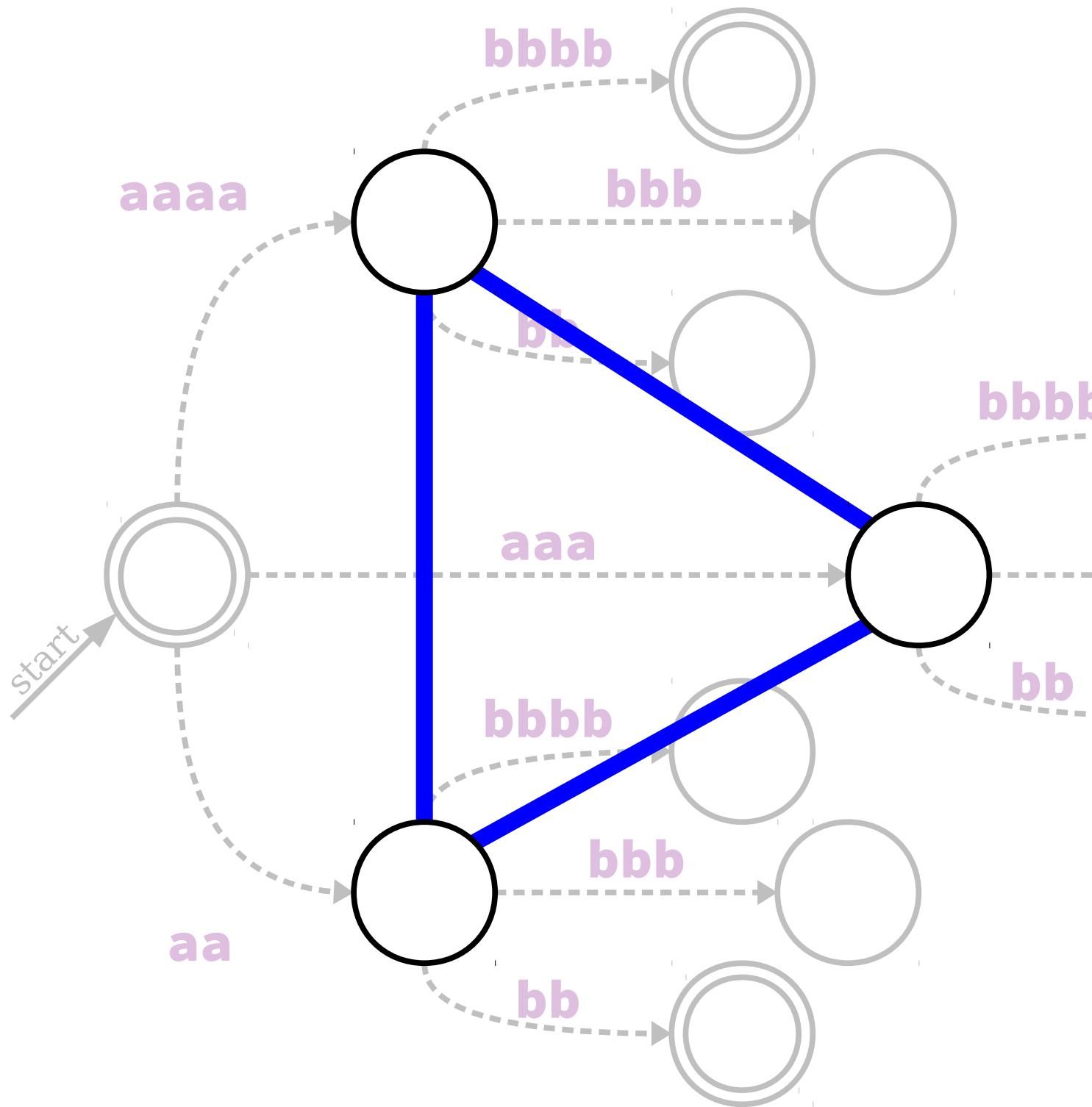
Write this down!

Distinguishability

- **Theorem:** Let L be an arbitrary language over Σ . Let $x \in \Sigma^*$ and $y \in \Sigma^*$ be strings where $x \not\equiv_L y$. Then if D is **any** DFA for L , then D must end in different states when run on inputs x and y .
- **Proof sketch:**







PollEv.com/cs103spr25:
This diagram shows that we can make 3 distinguishable strings (forcing *at least* 3 states in this DFA, to keep these strings separated). Could we expand the diagram to make 4? 5? **How many?**

A Bad Combination

- Suppose there is a DFA D for the language $E = \{\mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N}\}$.
- We know the following:
 - Any two strings of the form \mathbf{a}^m and \mathbf{a}^n , where $m \neq n$, cannot end in the same state when run through D .
 - There are **infinitely many** strings of the form \mathbf{a}^m .
 - However, there are only *finitely many* states they can end up in, since D is a deterministic **finite** automaton!
- What happens if we put these pieces together?

Distinguishing Sets

- Let L be a language over Σ .
- A ***distinguishing set*** for L is a set $S \subseteq \Sigma^*$ where the following is true:
$$\forall x \in S. \forall y \in S. (x \neq y \rightarrow x \not\equiv_L y)$$

We say that $x \not\equiv_L y$ if the following is true:

$$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$$

Distinguishing Sets

- Let L be a language over Σ .
- A ***distinguishing set*** for L is a set $S \subseteq \Sigma^*$ where the following is true:

$$\forall x \in S. \forall y \in S. (x \neq y \rightarrow x \not\equiv_L y)$$

If you pick any two distinct strings in S ...

... then they're distinguishable relative to L .

We say that $x \not\equiv_L y$ if the following is true:

$$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$$

Distinguishing Sets

- Let L be a language over Σ .
- A ***distinguishing set*** for L is a set $S \subseteq \Sigma^*$ where the following is true:
$$\forall x \in S. \forall y \in S. (x \neq y \rightarrow x \not\equiv_L y)$$
- As an example, here's a distinguishing set for $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$:

$$S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$$

We say that $x \not\equiv_L y$ if the following is true:

$$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$$

IMPORTANT:

A distinguishing set for the language E is **not a subset** of E . It is a set of **prefixes** (beginning part) of strings in E .

Theorem (Myhill-Nerode): If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Proof: Let L be an arbitrary language over Σ and let S be a distinguishing set for L that contains infinitely many strings. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This means that there must be some DFA D for L . Let k be the number of states in D . Since there are infinitely many strings in S , we can choose $k+1$ distinct strings from S and consider what happens when we run D on all of those strings. Because there are only k states in D and we've chosen $k+1$ strings from S , by the pigeonhole principle we know that at least two strings from S must end in the same state in D . Choose any two such strings and call them x and y .

Because $x \neq y$ and S is a distinguishing set for L , we know that $x \not\equiv_L y$. Our earlier theorem therefore tells us that when we run D on inputs x and y , they must end up in different states. But this is impossible – we chose x and y precisely because they end in the same state when run through D .

We have reached a contradiction, so our assumption must have been wrong. Thus L is not a regular language. ■

Using the Myhill-Nerode Theorem
for $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof:

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

To see that S is a distinguishing set for E , consider any strings $\mathbf{a}^m, \mathbf{a}^n \in S$ where $m \neq n$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

To see that S is a distinguishing set for E , consider any strings $\mathbf{a}^m, \mathbf{a}^n \in S$ where $m \neq n$. Note that $\mathbf{a}^m \mathbf{b}^m \in E$ and that $\mathbf{a}^n \mathbf{b}^m \notin E$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

To see that S is a distinguishing set for E , consider any strings $\mathbf{a}^m, \mathbf{a}^n \in S$ where $m \neq n$. Note that $\mathbf{a}^m \mathbf{b}^m \in E$ and that $\mathbf{a}^n \mathbf{b}^m \notin E$. Therefore, we see that $\mathbf{a}^m \not\equiv_E \mathbf{a}^n$, as required.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

To see that S is a distinguishing set for E , consider any strings $\mathbf{a}^m, \mathbf{a}^n \in S$ where $m \neq n$. Note that $\mathbf{a}^m \mathbf{b}^m \in E$ and that $\mathbf{a}^n \mathbf{b}^m \notin E$. Therefore, we see that $\mathbf{a}^m \not\equiv_E \mathbf{a}^n$, as required.

Since S is infinite and is a distinguishing set for E , by the Myhill-Nerode theorem we see that E is not regular.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$ is not regular.

Proof: Let $S = \{ \mathbf{a}^n \mid n \in \mathbb{N} \}$. We will prove that S is infinite and that S is a distinguishing set for E .

To see that S is infinite, note that S contains one string for each natural number.

To see that S is a distinguishing set for E , consider any strings $\mathbf{a}^m, \mathbf{a}^n \in S$ where $m \neq n$. Note that $\mathbf{a}^m \mathbf{b}^m \in E$ and that $\mathbf{a}^n \mathbf{b}^m \notin E$. Therefore, we see that $\mathbf{a}^m \not\equiv_E \mathbf{a}^n$, as required.

Since S is infinite and is a distinguishing set for E , by the Myhill-Nerode theorem we see that E is not regular. ■

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

What Just Happened?

- ***We've just hit the limit of finite-memory computation.***
- To build a DFA for $E = \{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$, we need to have different memory configurations (states) for all possible strings of the form \mathbf{a}^n .
- There's no way to do this with finitely many possible states!

More Nonregular Languages

Another Language

- Consider the following language EQ over the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{\underline{?}}\}$:

$$EQ = \{ w\mathbf{\underline{?}}w \mid w \in \{\mathbf{a}, \mathbf{b}\}^* \}$$

- EQ is the language all strings consisting of the same string of \mathbf{a} 's and \mathbf{b} 's twice, with a $\mathbf{\underline{?}}$ symbol in-between.
- Examples:

$$\mathbf{ab\underline{?}ab} \in EQ$$

$$\mathbf{bbb\underline{?}bbb} \in EQ \quad \mathbf{\underline{?}} \in EQ$$

$$\mathbf{ab\underline{?}ba} \notin EQ$$

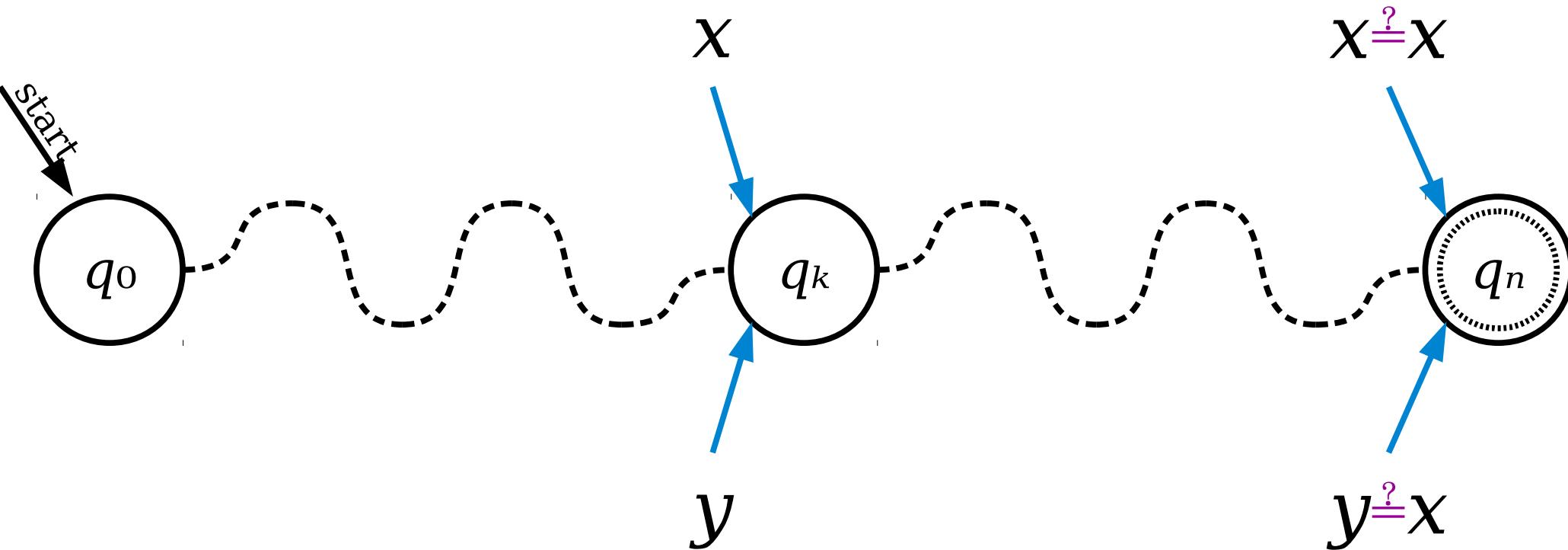
$$\mathbf{bbb\underline{?}aaa} \notin EQ \quad \mathbf{b\underline{?}} \notin EQ$$

The Intuition

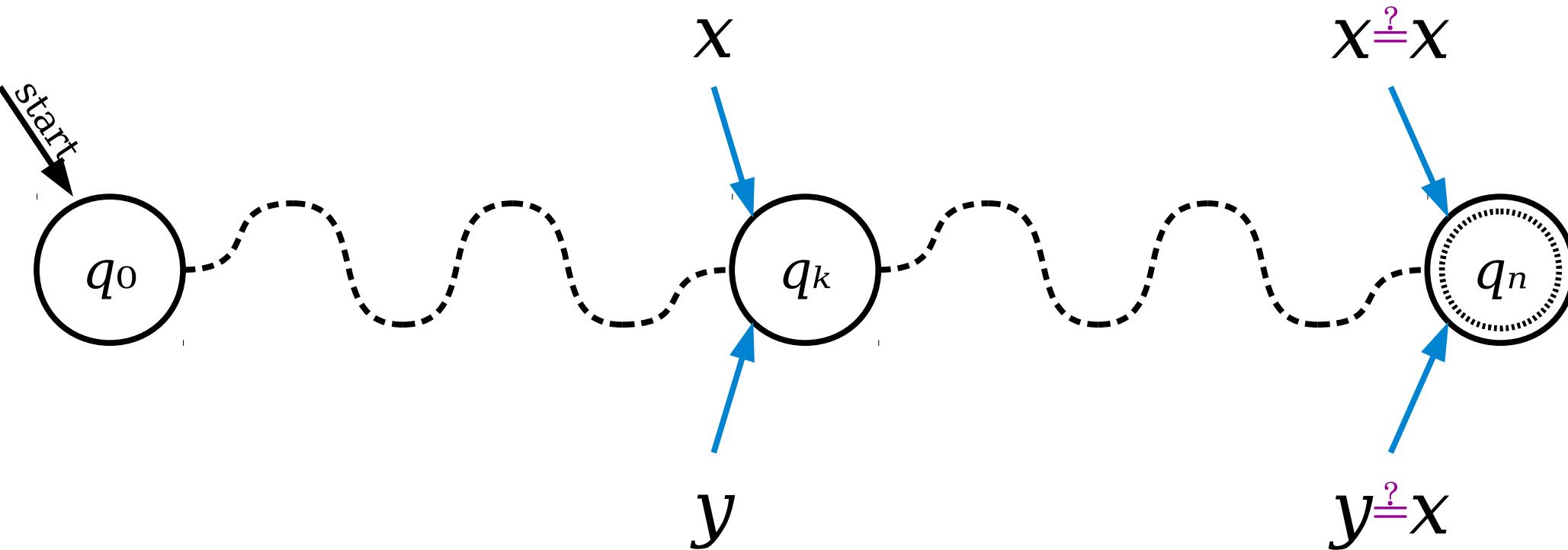
$$EQ = \{ w\underline{?}w \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$$

- Intuitively, any machine for EQ has to be able to remember the contents of everything to the left of the $\underline{?}$ so that it can match them against the contents of the string to the right of the $\underline{?}$.
- There are infinitely many possible strings we can see, but we only have finite memory to store which string we saw.
- That's a problem... can we formalize this?

The Intuition



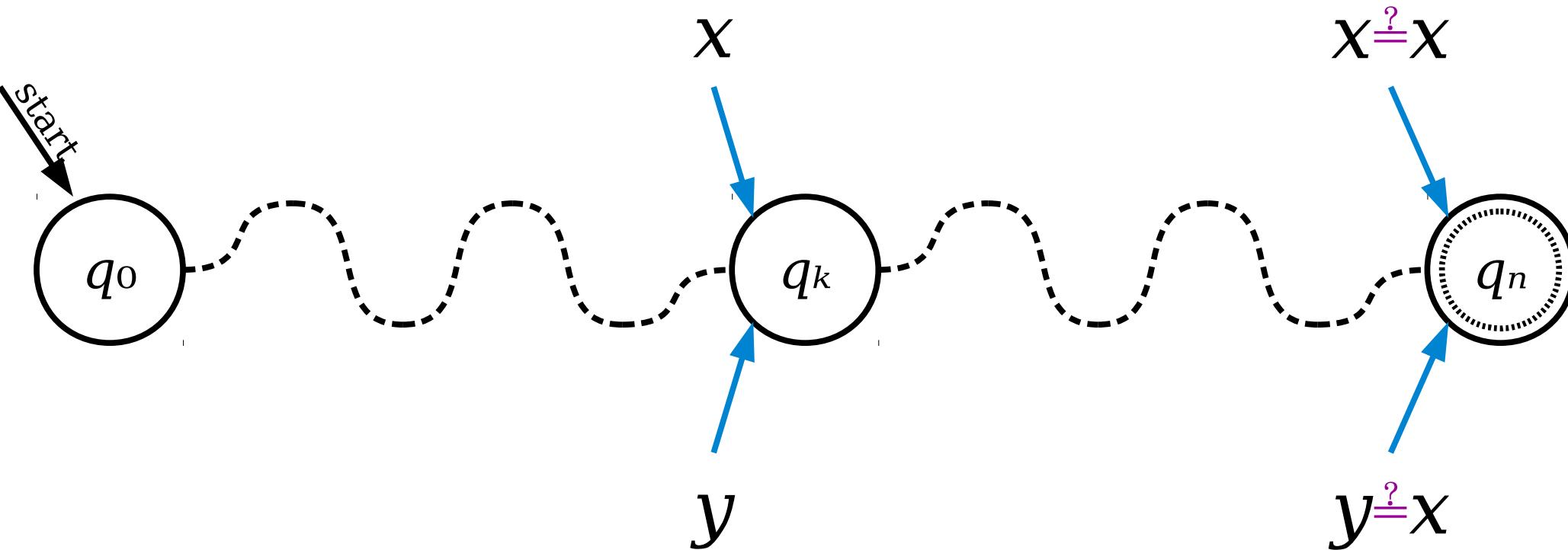
The Intuition



What happens if q_n is...

- ...an accepting state?
- ...a rejecting state?

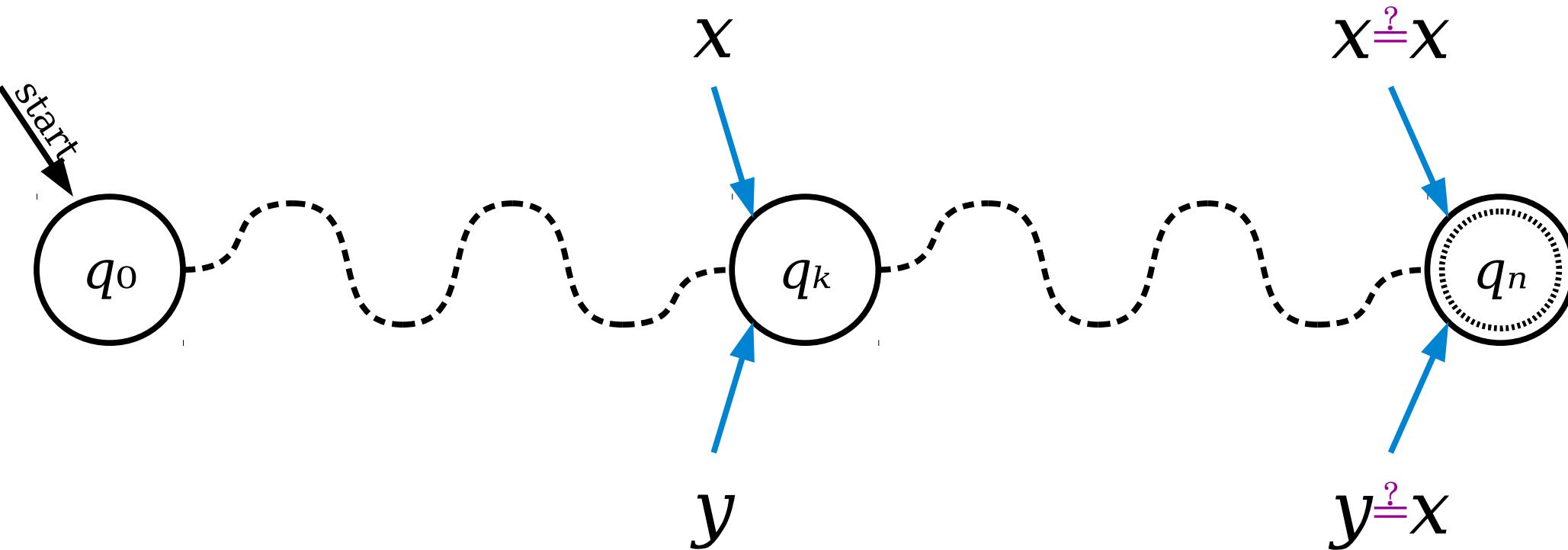
The Intuition



What happens if q_n is...

...an accepting state? We accept $y \stackrel{?}{=} x \notin EQ!$
...a rejecting state?

The Intuition



What happens if q_n is...

...an accepting state?	We accept $y \stackrel{?}{=} x \notin EQ!$
...a rejecting state?	We reject $x \stackrel{?}{=} x \in EQ!$

Another Language

- Consider the following language E on the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{\underline{?}}\}$:

$$EQ = \{ w\mathbf{\underline{?}}w \mid w \in \{\mathbf{a}, \mathbf{b}\}^* \}$$

- EQ is the language all strings consisting of the same string of \mathbf{a} 's and \mathbf{b} 's twice with $\mathbf{\underline{?}}$ symbol in-between.
- Examples:

$$\mathbf{ab\underline{?}ab} \in EQ$$

$$\mathbf{bbb\underline{?}bbb} \in EQ$$

$$\mathbf{\underline{?}} \in EQ$$

$$\mathbf{ab\underline{?}ba} \notin EQ$$

$$\mathbf{bbb\underline{?}aaa} \notin EQ$$

$$\mathbf{b\underline{?}} \notin EQ$$

PollEv.com/cs103spr25:

Which of these are good infinite distinguishing sets for EQ that we could use in a Myhill-Nerode proof?

- $\{\mathbf{a}^n \mid n \in \mathbb{N}\}$
- $\{\mathbf{b}^n \mid n \in \mathbb{N}\}$
- $\{\mathbf{a}, \mathbf{b}\}^*$
- $\{\mathbf{a}^n\mathbf{\underline{?}}\mathbf{a}^n \mid n \in \mathbb{N}\}$
- $\{\mathbf{a}^n\mathbf{\underline{?}} \mid n \in \mathbb{N}\}$

We say that $\mathbf{x} \not\equiv_L \mathbf{y}$ if the

following is true:

$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$

Distinguishing Sets

- We've identified a distinguishing set for $EQ = \{ w \underline{=} w \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$:

$$S = \{\mathbf{a}, \mathbf{b}\}^*$$

We say that $x \not\equiv_L y$ if the following is true:
 $\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$

IMPORTANT:

A distinguishing set for the language EQ is **not a subset** of EQ . It is a set of **prefixes** (beginning part) of strings in EQ .

Distinguishing Sets

- We've identified a distinguishing set for $EQ = \{ w \underline{=} w \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$:

$$S = \{\mathbf{a}, \mathbf{b}\}^*$$

We say that $x \not\equiv_L y$ if the following is true:
 $\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$

IMPORTANT:

A distinguishing set for the language EQ is **not a subset** of EQ . It is a set of **prefixes** (beginning part) of strings in EQ .

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof:

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{\mathbf{a}, \mathbf{b}\}^*\}$ is not regular.

Proof: Let $S = \{\mathbf{a}, \mathbf{b}\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $\mathbf{a}^n \in S$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ , consider any strings $x, y \in S$ where $x \neq y$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ , consider any strings $x, y \in S$ where $x \neq y$. Then $x\bar{x} \in EQ$ and $y\bar{x} \notin EQ$.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ , consider any strings $x, y \in S$ where $x \not\equiv_{EQ} y$. Then $x\bar{x} \in EQ$ and $y\bar{x} \notin EQ$. Therefore, $x \not\equiv y$, as required.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ , consider any strings $x, y \in S$ where $x \not\equiv_{EQ} y$. Then $x\bar{x} \in EQ$ and $y\bar{x} \notin EQ$. Therefore, $x \not\equiv y$, as required.

Since S is infinite and a distinguishing set for EQ , by the Myhill-Nerode theorem we see that EQ is not regular, as required.

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Theorem: The language $EQ = \{ w\bar{w} \mid w \in \{a, b\}^*\}$ is not regular.

Proof: Let $S = \{a, b\}^*$. We will prove that S is infinite and that S is a distinguishing set for EQ .

To see that S is infinite, note that, for any $n \in \mathbb{N}$, we have $a^n \in S$. Therefore, S contains at least one string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ , consider any strings $x, y \in S$ where $x \not\equiv_{EQ} y$. Then $x\bar{x} \in EQ$ and $y\bar{x} \notin EQ$. Therefore, $x \not\equiv y$, as required.

Since S is infinite and a distinguishing set for EQ , by the Myhill-Nerode theorem we see that EQ is not regular, as required. ■

Myhill-Nerode

Theorem: If L is a language and S is a distinguishing set for L that contains infinitely many strings, then L is not regular.

Approaching Myhill-Nerode

- The challenge in using the Myhill-Nerode theorem is finding the right set of strings.
- ***General intuition:***
 - Start by thinking about what information a computer “must” remember in order to answer correctly.
 - Choose a group of strings that all require different information.
 - Prove that you have infinitely many strings and that the group of strings is a distinguishing set.

Another Language

- Consider the following language P over the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}\}$:

$$P = \{ w \mid w \text{ is a palindrome}\}$$

- P is the language all strings where the second half is a “mirror” (reverse order) copy of the first half.
- Examples:

$$\mathbf{abba} \in EQ$$

$$\mathbf{bbb} \in EQ$$

$$\mathbf{a} \in EQ$$

$$\mathbf{abaaba} \in EQ$$

$$\mathbf{abab} \notin EQ$$

$$\mathbf{aabb} \notin EQ$$

Another Language

- Consider the following language P over the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}\}$:
$$P = \{ w \mid w \text{ is a palindrome} \}$$
- P is the language all strings where the second half is a “mirror” (reverse copy of the first half).
- Examples:

abba $\in EQ$

bbb $\in EQ$

a $\in EQ$

abaaba $\in EQ$

abab $\notin EQ$

aab

PollEv.com/cs103spr25:

Which of these are good infinite distinguishing sets for P that we could use in a Myhill-Nerode proof?

1. $\{ \mathbf{a}^n \mid n \in \mathbb{N} \}$
2. $\{ \mathbf{b}^n \mid n \in \mathbb{N} \}$
3. $\{\mathbf{a}, \mathbf{b}\}^*$
4. $\{ \mathbf{a}^n \mathbf{b} \mid n \in \mathbb{N} \}$
5. $\{ \mathbf{a}^n \mathbf{b}^n \mid n \in \mathbb{N} \}$

We say that $\mathbf{x} \not\equiv_L \mathbf{y}$ if the following is true:

$$\exists w \in \Sigma^*. (xw \in L \leftrightarrow yw \notin L)$$

Tying Everything Together

- One of the intuitions we hope you develop for DFAs is to have each state in a DFA represent some key piece of information the automaton has to remember.
- If you only need to remember one of finitely many pieces of information, that gives you a DFA.
 - This can be made rigorous! Take CS154 for details.
- If you need to remember one of infinitely many pieces of information, you can use the Myhill-Nerode theorem to prove that the language has no DFA.

Where We Stand

Where We Stand

- We've ended up where we are now by trying to answer the question "what problems can you solve with a computer?"
- We defined a computer to be DFA, which means that the problems we can solve are precisely the regular languages.
- We've discovered several equivalent ways to think about regular languages (DFAs, NFAs, and regular expressions) and used that to reason about the regular languages.
- We now have a powerful intuition for where we ended up: DFAs are finite-memory computers, and regular languages correspond to problems solvable with finite memory.
- Putting all of this together, we have a much deeper sense for what finite memory computation looks like - *and what it doesn't look like!*

Where We're Going

- What does computation look like with unbounded memory?
- What problems can you solve with unbounded-memory computers?
- What does it even mean to “solve” such a problem?
- And how do we know the answers to any of these questions?

Next Time

- *Context-Free Languages*
 - Context-Free Grammars
 - Generating Languages from Scratch