

Nonregular Languages

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

New Stuff!

Why does this matter?

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

Take
CS148!

Take
CS148!

http://cs103.stanford.edu/tools/button-fsm/

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

Take
CS144!

Take
CS144!

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

Take
CS193P!

Take
CS193P!

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

Computers as Finite Automata

● My computer has 12GB of RAM and about
150GB of hard disk space.

● That's a total of 162GB of memory, which is
1,391,569,403,904 bits.

● There are “only” 21,391,569,403,904 possible
configurations of the memory in my
computer.

● You could in principle build a DFA
representing my computer, where there's one
symbol per type of input the computer can
receive.

A Powerful Intuition

● Regular languages correspond to problems
that can be solved with finite memory.
● At each point in time, we only need to store

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond

to problems that cannot be solved with finite
memory.

● Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved
by physical computers!

Finding Nonregular Languages

Finding Nonregular Languages

● To prove that a language is regular, we can just
find a DFA, NFA, or regex for it.

● To prove that a language is not regular, we need
to prove that there is no possible DFA for it.

● (or no possible NFA, or regex---but since these
are equivalent we only need to show one is
impossible)

● This sort of argument will be challenging!

Finding Nonregular Languages

● What kind of characteristics make a language too
hard for any of these to handle?

● Deterministic Finite Automata (DFA)
● Nondeterministic Finite Automata (NFA)
● Regular Expression

PollEv.com/cs103spr25:
T/F: You can’t make a DFA

for a language (set of
strings) with infinite

cardinality, so a language
with infinite cardinality

cannot be a regular
langauge.

PollEv.com/cs103spr25:
T/F: You can’t make a DFA

for a language (set of
strings) with infinite

cardinality, so a language
with infinite cardinality

cannot be a regular
langauge.

A Simple Language

● Let Σ = {a, b} and consider the following
language:

E = {anbn | n ∈ ℕ }
● E is the language of all strings of n a's

followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

A Simple Language

E = {anbn | n ∈ ℕ }

PollEv.com/cs103spr25: Which of the
following are correct regular expressions for

the language E defined above?

a*b*
(ab)*

ε ab a∪ ∪ 2b2 a∪ 3b3

PollEv.com/cs103spr25: Which of the
following are correct regular expressions for

the language E defined above?

a*b*
(ab)*

ε ab a∪ ∪ 2b2 a∪ 3b3

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● Does this machine work?

a

b
start

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● Does this machine work?

a

b
start

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● How about this one?

ε ε

a b

start

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● How about this one?

ε ε

a b

start

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● What about this?

start a a

b b

b

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.
● What about this?

start a a

b b

b

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

PollEv.com/cs103spr25:
What is a regex that

describes the language of
this NFA?

We seem to be running into some trouble.
Why is that?

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?

st
ar

t

aaaa

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

st
ar

t

aaaa

bbbb

aaaabbbbThis isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

st
ar

t

aaaa

bbbb

bb

aaaabbbb

aaaabb

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

st
ar

t

aaaa

aa

bbbb

bb

aaaabbbb

aaaabb

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

st
ar

t

aaaa

aa

bbbb

bb

aaaabbbb

aaaabb

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

These cannot be
the same state!

These cannot be
the same state!

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

aaaabbbb

aaaabb

aabbbb

aabb

These cannot be
the same state!

These cannot be
the same state!

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up at this state.”

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What’s Going On?

● As you just saw, the strings a4 and a2 can't end up in the
same state in any DFA for E = {anbn | n ∈ ℕ}.

● Two proof routes:
● Direct: The states you reach for a4 and a2 have to behave

differently when reading b4 – in one case it should lead to an
accept state, in the other it should lead to a reject state.
Therefore, they must be different states.

● Contradiction: Suppose you do end up in the same state. Then
a4b4 and a2b4 end up in the same state, so we either reject a4b4
(oops) or accept a2b4 (oops).

● Powerful intuition: Any DFA for E must keep a4 and a2
separated. It needs to remember something
fundamentally different after reading those strings.

This idea – that two strings shouldn't end
up in the same DFA state – is fundamental

to discovering nonregular languages.

Let's go formalize this!

Distinguishability

● Let L be an arbitrary language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called

distinguishable relative to L if there is a string
w ∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢≢L y.

● In our previous example, we saw that a2 ≢≢E a4.
● Try appending b4 to both of them.

● Formally, we say that x ≢≢L y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)
Write this down!Write this down!

Distinguishability

● Theorem: Let L be an arbitrary language over Σ. Let
x ∈ Σ* and y ∈ Σ* be strings where x ≢≢L y. Then if D is any
DFA for L, then D must end in different states when run
on inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start

y

x xw

yw

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

bbbb

bb

bbb

bbb

bbb

aaa

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

bbbb

bb

bbb

bbb

bbb

aaa

PollEv.com/cs103spr25:
This diagram shows that

we can make 3
distinguishable strings

(forcing at least 3 states in
this DFA, to keep these

strings separated). Could
we expand the diagram to
make 4? 5? How many?

PollEv.com/cs103spr25:
This diagram shows that

we can make 3
distinguishable strings

(forcing at least 3 states in
this DFA, to keep these

strings separated). Could
we expand the diagram to
make 4? 5? How many?

A Bad Combination

● Suppose there is a DFA D for the language
E = {anbn | n ∈ ℕ }.

● We know the following:
● Any two strings of the form am and an, where m ≠ n,

cannot end in the same state when run through D.
● There are infinitely many strings of the form am.
● However, there are only finitely many states they can

end up in, since D is a deterministic finite
automaton!

● What happens if we put these pieces together?

Distinguishing Sets

● Let L be a language over Σ.
● A distinguishing set for L is a set

S ⊆ Σ* where the following is true:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢≢L y)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Distinguishing Sets

● Let L be a language over Σ.
● A distinguishing set for L is a set

S ⊆ Σ* where the following is true:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢≢L y)

If you pick any two distinct
strings in S…

If you pick any two distinct
strings in S…

… then they’re
distinguishable

relative to L.

… then they’re
distinguishable

relative to L.

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Distinguishing Sets

● Let L be a language over Σ.
● A distinguishing set for L is a set

S ⊆ Σ* where the following is true:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢≢L y)

● As an example, here’s a distinguishing
set for E = { anbn | n ∈ ℕ }:

S = { an | n ∈ ℕ }

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

IMPORTANT:
A distinguishing set for the

language E is not a subset of
E. It is a set of prefixes

(beginning part) of strings in E.

IMPORTANT:
A distinguishing set for the

language E is not a subset of
E. It is a set of prefixes

(beginning part) of strings in E.

Theorem (Myhill-Nerode): If L is a
language and S is a distinguishing set for

L that contains infinitely many strings,
then L is not regular.

Proof: Let L be an arbitrary language over Σ and let S be a
distinguishing set for L that contains infinitely many strings.
We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This
means that there must be some DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can choose k+1 distinct strings from S and consider what
happens when we run D on all of those strings. Because there
are only k states in D and we've chosen k+1 strings from S, by
the pigeonhole principle we know that at least two strings from
S must end in the same state in D. Choose any two such strings
and call them x and y.

Because x ≠ y and S is a distinguishing set for L, we know that
x ≢≢ y. Our earlier theorem therefore tells us that when we run
D on inputs x and y, they must end up in different states. But
this is impossible – we chose x and y precisely because they end
in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Using the Myhill-Nerode Theorem
for E = { anbn | n ∈ ℕ }

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any strings strings am, an ∈ S where m ≠ n. Note
that ambm ∈ E and that anbm ∉ E. Therefore, we see
that am ≢≢ an, as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

What Just Happened?

● We've just hit the limit of finite-
memory computation.

● To build a DFA for E = { anbn | n ∈ ℕ },
we need to have different memory
configurations (states) for all possible
strings of the form an.

● There's no way to do this with finitely
many possible states!

More Nonregular Languages

Another Language

● Consider the following language EQ over
the alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}
● EQ is the language all strings consisting of

the same string of a's and b's twice, with a
≟ symbol in-between.

● Examples:

 ab ab≟ ∈ EQ bbb bbb≟ ∈ EQ ≟≟ ∈ EQ

 ab ba≟ ∉ EQ bbb aaa≟ ∉ EQ b≟ ∉ EQ

The Intuition

EQ = { w≟w | w ∈ {a, b}*}
● Intuitively, any machine for EQ has to be able

to remember the contents of everything to the
left of the ≟ so that it can match them against
the contents of the string to the right of the ≟.

● There are infinitely many possible strings we
can see, but we only have finite memory to
store which string we saw.

● That's a problem... can we formalize this?

qₙq₀ qₖ

start

The Intuition

y

x x≟x

y≟x

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? We reject aaaabbbb !

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? We reject aaaabbbb !

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? We reject x≟x ∈ EQ!

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? We reject x≟x ∈ EQ!

qₙ

Another Language

● Consider the following language EQ over
the alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}
● EQ is the language all strings consisting of

the same string of a's and b's twice, with a
≟ symbol in-between.

● Examples:

 ab ab≟ ∈ EQ bbb bbb≟ ∈ EQ ≟≟ ∈ EQ

 ab ba≟ ∉ EQ bbb aaa≟ ∉ EQ b≟ ∉ EQ

PollEv.com/cs103spr25:
Which of these are good

infinite distinguishing sets
for EQ that we could use in

a Myhill-Nerode proof?
1. { an | n ∈ ℕ }
2. { bn | n ∈ ℕ }

3. {a, b}*
4. { an a≟ n | n ∈ ℕ }
5. { an≟ | n ∈ ℕ }

PollEv.com/cs103spr25:
Which of these are good

infinite distinguishing sets
for EQ that we could use in

a Myhill-Nerode proof?
1. { an | n ∈ ℕ }
2. { bn | n ∈ ℕ }

3. {a, b}*
4. { an a≟ n | n ∈ ℕ }
5. { an≟ | n ∈ ℕ }

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Distinguishing Sets

● We’ve identified a distinguishing set for
EQ = { w≟w | w ∈ {a, b}*}:

S = {a, b}*

IMPORTANT:
A distinguishing set for the

language EQ is not a subset of
EQ. It is a set of prefixes

(beginning part) of strings in EQ.

IMPORTANT:
A distinguishing set for the

language EQ is not a subset of
EQ. It is a set of prefixes

(beginning part) of strings in EQ.

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Distinguishing Sets

● We’ve identified a distinguishing set for
EQ = { w≟w | w ∈ {a, b}*}:

S = {a, b}*

IMPORTANT:
A distinguishing set for the

language EQ is not a subset of
EQ. It is a set of prefixes

(beginning part) of strings in EQ.

IMPORTANT:
A distinguishing set for the

language EQ is not a subset of
EQ. It is a set of prefixes

(beginning part) of strings in EQ.

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

EQ

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

EQ

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ,
we have an ∈ S. Therefore, S contains at least one
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ,
consider any strings x, y ∈ S where x ≠ y. Then x≟x
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢ y, as required.

Since S is infinite and a distinguishing set for EQ,
by the Myhill-Nerode theorem we see that EQ is
not regular, as required. ■

EQ

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Myhill-Nerode
Theorem: If L is a
language and S is a
distinguishing set for L
that contains infinitely
many strings, then L is
not regular.

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

● General intuition:
● Start by thinking about what information a

computer “must” remember in order to answer
correctly.

● Choose a group of strings that all require
different information.

● Prove that you have infinitely many strings an
that the group of strings is a distinguishing set.

Another Language

● Consider the following language P over the
alphabet Σ = {a, b}:

P = { w | w is a palindrome}
● P is the language all strings where the

second half is a “mirror” (reverse order)
copy of the first half.

● Examples:

 abba ∈ EQ bbb ∈ EQ ≟a ∈ EQ ≟

 abaaba ∈ EQ abab ∉ EQ aabb ∉ EQ

Another Language

● Consider the following language P over the
alphabet Σ = {a, b}:

P = { w | w is a palindrome}
● P is the language all strings where the

second half is a “mirror” (reverse order)
copy of the first half.

● Examples:

 abba ∈ EQ bbb ∈ EQ ≟a ∈ EQ ≟

 abaaba ∈ EQ abab ∉ EQ aabb ∉ EQ

PollEv.com/cs103spr25:
Which of these are good

infinite distinguishing sets
for P that we could use in a

Myhill-Nerode proof?
1. { an | n ∈ ℕ }
2. { bn | n ∈ ℕ }

3. {a, b}*
4. { anb | n ∈ ℕ }
5. { anbn | n ∈ ℕ }

PollEv.com/cs103spr25:
Which of these are good

infinite distinguishing sets
for P that we could use in a

Myhill-Nerode proof?
1. { an | n ∈ ℕ }
2. { bn | n ∈ ℕ }

3. {a, b}*
4. { anb | n ∈ ℕ }
5. { anbn | n ∈ ℕ }

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

We say that x ≢≢L y if the
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Tying Everything Together

● One of the intuitions we hope you develop for
DFAs is to have each state in a DFA represent
some key piece of information the automaton
has to remember.

● If you only need to remember one of finitely
many pieces of information, that gives you a
DFA.
● This can be made rigorous! Take CS154 for details.

● If you need to remember one of infinitely many
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language
has no DFA.

Where We Stand

Where We Stand

● We've ended up where we are now by trying to answer the
question “what problems can you solve with a computer?”

● We defined a computer to be DFA, which means that the
problems we can solve are precisely the regular languages.

● We've discovered several equivalent ways to think about
regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense
for what finite memory computation looks like – and what it
doesn't look like!

Where We're Going

● What does computation look like with
unbounded memory?

● What problems can you solve with
unbounded-memory computers?

● What does it even mean to “solve” such a
problem?

● And how do we know the answers to any
of these questions?

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages from Scratch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

