
  

Nonregular Languages



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

New Stuff!



  

Why does this matter?



  

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

Take 
CS148!

Take 
CS148!

http://cs103.stanford.edu/tools/button-fsm/


  

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

Take 
CS144!

Take 
CS144!

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf


  

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

Take 
CS193P!

Take 
CS193P!

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/


  

Computers as Finite Automata

● My computer has 12GB of RAM and about 
150GB of hard disk space.

● That's a total of 162GB of memory, which is 
1,391,569,403,904 bits.

● There are “only” 21,391,569,403,904 possible 
configurations of the memory in my 
computer.

● You could in principle build a DFA 
representing my computer, where there's one 
symbol per type of input the computer can 
receive.



  

A Powerful Intuition

● Regular languages correspond to problems 
that can be solved with finite memory.
● At each point in time, we only need to store 

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond 

to problems that cannot be solved with finite 
memory.

● Since every computer ever built has finite 
memory, in a sense, nonregular languages 
correspond to problems that cannot be solved 
by physical computers!



  

Finding Nonregular Languages



  

Finding Nonregular Languages

● To prove that a language is regular, we can just 
find a DFA, NFA, or regex for it.

● To prove that a language is not regular, we need 
to prove that there is no possible DFA for it. 

● (or no possible NFA, or regex---but since these 
are equivalent we only need to show one is 
impossible)

● This sort of argument will be challenging!



  

Finding Nonregular Languages

● What kind of characteristics make a language too 
hard for any of these to handle?

● Deterministic Finite Automata (DFA)
● Nondeterministic Finite Automata (NFA)
● Regular Expression

PollEv.com/cs103spr25: 
T/F: You can’t make a DFA 

for a language (set of 
strings) with infinite 

cardinality, so a language 
with infinite cardinality 

cannot be a regular 
langauge.

PollEv.com/cs103spr25: 
T/F: You can’t make a DFA 

for a language (set of 
strings) with infinite 

cardinality, so a language 
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cannot be a regular 
langauge.



  

A Simple Language

● Let Σ = {a, b} and consider the following 
language:

E = {anbn | n ∈ ℕ }     
● E is the language of all strings of n a's 

followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }



  

A Simple Language

E = {anbn | n ∈ ℕ }      

PollEv.com/cs103spr25: Which of the 
following are correct regular expressions for 

the language E defined above?

a*b*
(ab)*

ε  ab  a∪ ∪ 2b2  a∪ 3b3

PollEv.com/cs103spr25: Which of the 
following are correct regular expressions for 

the language E defined above?

a*b*
(ab)*

ε  ab  a∪ ∪ 2b2  a∪ 3b3



  

Another Attempt

● Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      
● Does this machine work?

a

b
start
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this NFA?



  

We seem to be running into some trouble.
Why is that?



  

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?
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This isn't a single 
transition. Think of it as 
“after reading aaaa, we 

end up at this state.”
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q₀ qₖ qₙ

start  

A Different Perspective
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aaaa aaaabbbb

aabbbb
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What’s Going On?

● As you just saw, the strings a4 and a2 can't end up in the 
same state in any DFA for E = {anbn | n ∈ ℕ}.

● Two proof routes:
● Direct: The states you reach for a4 and a2 have to behave 

differently when reading b4 – in one case it should lead to an 
accept state, in the other it should lead to a reject state. 
Therefore, they must be different states.

● Contradiction: Suppose you do end up in the same state. Then 
a4b4 and a2b4 end up in the same state, so we either reject a4b4 
(oops) or accept a2b4 (oops).

● Powerful intuition: Any DFA for E must keep a4 and a2 
separated. It needs to remember something 
fundamentally different after reading those strings.



  

This idea – that two strings shouldn't end 
up in the same DFA state – is fundamental 

to discovering nonregular languages.

Let's go formalize this!



  

Distinguishability

● Let L be an arbitrary language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called 

distinguishable relative to L if there is a string 
w ∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢≢L y.

● In our previous example, we saw that a2 ≢≢E a4.
● Try appending b4 to both of them.

● Formally, we say that x ≢≢L y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)   
Write this down!Write this down!



  

Distinguishability

● Theorem: Let L be an arbitrary language over Σ. Let 
x ∈ Σ* and y ∈ Σ* be strings where x ≢≢L y. Then if D is any 
DFA for L, then D must end in different states when run 
on inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start  

y

x xw

yw
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PollEv.com/cs103spr25: 
This diagram shows that 

we can make 3 
distinguishable strings 

(forcing at least 3 states in 
this DFA, to keep these 

strings separated). Could 
we expand the diagram to 
make 4? 5? How many?
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A Bad Combination

● Suppose there is a DFA D for the language
E = {anbn | n ∈ ℕ }.

● We know the following:
● Any two strings of the form am and an, where m ≠ n, 

cannot end in the same state when run through D.
● There are infinitely many strings of the form am.
● However, there are only finitely many states they can 

end up in, since D is a deterministic finite 
automaton!

● What happens if we put these pieces together?



  

Distinguishing Sets

● Let L be a language over Σ.
● A distinguishing set for L is a set 

S ⊆ Σ* where the following is true:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢≢L y)

We say that x ≢≢L y if the 
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L) 

We say that x ≢≢L y if the 
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Distinguishing Sets

● Let L be a language over Σ.
● A distinguishing set for L is a set 

S ⊆ Σ* where the following is true:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢≢L y)

● As an example, here’s a distinguishing 
set for E = { anbn | n ∈ ℕ }:

S = { an | n ∈ ℕ }

We say that x ≢≢L y if the 
following is true:
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∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L) 

IMPORTANT:
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language E is not a subset of 
E. It is a set of prefixes 

(beginning part) of strings in E.
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(beginning part) of strings in E.



  

Theorem (Myhill-Nerode): If L is a 
language and S is a distinguishing set for 

L that contains infinitely many strings, 
then L is not regular.



  

Proof: Let L be an arbitrary language over Σ and let S be a
distinguishing set for L that contains infinitely many strings.
We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This 
means that there must be some DFA D for L. Let k be the 
number of states in D. Since there are infinitely many strings in 
S, we can choose k+1 distinct strings from S and consider what 
happens when we run D on all of those strings. Because there 
are only k states in D and we've chosen k+1 strings from S, by 
the pigeonhole principle we know that at least two strings from 
S must end in the same state in D. Choose any two such strings 
and call them x and y.

Because x ≠ y and S is a distinguishing set for L, we know that
x ≢≢  y. Our earlier theorem therefore tells us that when we run 
D on inputs x and y, they must end up in different states. But 
this is impossible – we chose x and y precisely because they end 
in the same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Thus L is not a regular language. ■

L



  

Using the Myhill-Nerode Theorem
for E = { anbn | n ∈ ℕ }



  

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one 
string for each natural number.

To see that S is a distinguishing set for E, consider 
any strings strings am, an ∈ S where m ≠ n. Note 
that ambm ∈ E and that anbm ∉ E. Therefore, we see 
that am ≢≢  an, as required.

Since S is infinite and is a distinguishing set for E, 
by the Myhill-Nerode theorem we see that E is not 
regular. ■
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What Just Happened?

● We've just hit the limit of finite-
memory computation.

● To build a DFA for E = { anbn | n ∈ ℕ }, 
we need to have different memory 
configurations (states) for all possible 
strings of the form an.

● There's no way to do this with finitely 
many possible states!



  

More Nonregular Languages



  

Another Language

● Consider the following language EQ over 
the alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}  
● EQ is the language all strings consisting of 

the same string of a's and b's twice, with a 
≟ symbol in-between.

● Examples:

 ab ab≟  ∈ EQ  bbb bbb≟  ∈ EQ ≟≟ ∈ EQ

 ab ba≟  ∉ EQ  bbb aaa≟  ∉ EQ b≟ ∉ EQ



  

The Intuition

EQ = { w≟w | w ∈ {a, b}*}  
● Intuitively, any machine for EQ has to be able 

to remember the contents of everything to the 
left of the ≟ so that it can match them against 
the contents of the string to the right of the ≟.

● There are infinitely many possible strings we 
can see, but we only have finite memory to 
store which string we saw.

● That's a problem... can we formalize this?
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Another Language

● Consider the following language EQ over 
the alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}  
● EQ is the language all strings consisting of 

the same string of a's and b's twice, with a 
≟ symbol in-between.

● Examples:

 ab ab≟  ∈ EQ  bbb bbb≟  ∈ EQ ≟≟ ∈ EQ

 ab ba≟  ∉ EQ  bbb aaa≟  ∉ EQ b≟ ∉ EQ

PollEv.com/cs103spr25: 
Which of these are good 

infinite distinguishing sets 
for EQ that we could use in 

a Myhill-Nerode proof?
1. { an | n ∈ ℕ }
2. { bn | n ∈ ℕ }

3. {a, b}*
4. { an a≟ n | n ∈ ℕ }
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We say that x ≢≢L y if the 
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L) 

We say that x ≢≢L y if the 
following is true:
∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L) 
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Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. We will prove that S is 
infinite

and that S is a distinguishing set for EQ.

To see that S is infinite, note that, for any n ∈ ℕ, 
we have an ∈ S. Therefore, S contains at least one 
string for each natural number, so S is infinite.

To see that S is a distinguishing set for EQ, 
consider any strings x, y ∈ S where x ≠ y. Then x≟x 
∈ EQ and y≟x ∉ EQ. Therefore, x ≢≢   y, as required.

Since S is infinite and a distinguishing set for EQ, 
by the Myhill-Nerode theorem we see that EQ is 
not regular, as required. ■

Myhill-Nerode 
Theorem: If L is a 
language and S is a 
distinguishing set for L 
that contains infinitely 
many strings, then L is 
not regular.
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Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode 
theorem is finding the right set of strings.

● General intuition:
● Start by thinking about what information a 

computer “must” remember in order to answer 
correctly.

● Choose a group of strings that all require 
different information.

● Prove that you have infinitely many strings an 
that the group of strings is a distinguishing set.



  

Another Language

● Consider the following language P over the 
alphabet Σ = {a, b}:

P = { w | w is a palindrome}  
● P is the language all strings where the 

second half is a “mirror” (reverse order) 
copy of the first half.

● Examples:

 abba ∈ EQ  bbb ∈ EQ ≟a ∈ EQ ≟

 abaaba ∈ EQ   abab ∉ EQ  aabb ∉ EQ 
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Tying Everything Together

● One of the intuitions we hope you develop for 
DFAs is to have each state in a DFA represent 
some key piece of information the automaton 
has to remember.

● If you only need to remember one of finitely 
many pieces of information, that gives you a 
DFA.
● This can be made rigorous! Take CS154 for details.

● If you need to remember one of infinitely many 
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language 
has no DFA.



  

Where We Stand



  

Where We Stand

● We've ended up where we are now by trying to answer the 
question “what problems can you solve with a computer?”

● We defined a computer to be DFA, which means that the 
problems we can solve are precisely the regular languages.

● We've discovered several equivalent ways to think about 
regular languages (DFAs, NFAs, and regular expressions) 
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up: 
DFAs are finite-memory computers, and regular languages 
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense 
for what finite memory computation looks like – and what it 
doesn't look like!



  

Where We're Going

● What does computation look like with 
unbounded memory?

● What problems can you solve with 
unbounded-memory computers?

● What does it even mean to “solve” such a 
problem?

● And how do we know the answers to any 
of these questions?



  

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages from Scratch
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